Depth
≡

Depth (≡
) is a monadic primitive function that returns an array's depth. In the APL array model, the depth of an array is the number of levels of nesting or boxing it exhibits. In some languages, Depth returns a negative result to indicate that not all paths through the array have the same depth.
Nested array depth
Nested APLs vary in their definition of depth. They may take into account the array's prototype, or not, and may use the positive depth, signed depth, or minimum depth as defined below (the choice may also depend on migration level). The APL Wiki generally uses "depth" to mean the positive depth.
In the nested array model, the depth is defined using the base case of a simple scalar, which by definition has depth 0.
The positive depth of a nonempty array other than a simple scalar is defined to be the largest depth among its elements, plus one. Thus a simple but nonscalar array has depth 1.
The positive depth of an empty array is usually defined (for example, in Dyalog APL) to be the depth of its prototype plus one. It can also be set to 1, since it contains no elements but is not a simple scalar. This is the case in ngn/apl.
An array has a consistent depth if it is a simple scalar, or if all of its elements (including the prototype, if prototype is used to determine depth) have a consistent depth and are equal in depth. The signed depth of an array is an integer with absolute value equal to its positive depth. It is negative if and only if it does not have a consistent depth.
dzaima/APL uses the minimum depth, which is 0 for a simple scalar and otherwise is one plus the minimum (rather than maximum) of the elements of a nonempty array. It defines the depth of an empty array to be one plus the depth of its prototype.
For arrays with a consistent depth the positive, signed, and minimum depth coincide. Thus the following example works in all nested APLs with stranding.
≡('ab' 'cde')('fg' 'hi')
3
A simple array must have a consistent depth, because it is either a simple scalar or contains only simple scalars. In the latter case each element necessarily has depth 0 and a consistent depth. Because of this it is not possible to have an array with a signed depth of ¯1: any array with a positive depth of 1 must be simple, and hence have consistent depth.
Flat array depth
In the flat array model, the depth is the number of levels of boxing in an array. More precisely, the depth of a nonboxed or empty array is 0, and a nonempty boxed array has depth equal to one plus the maximum of the depths of the arrays it contains.
The J language uses the token L.
and name "Level Of" for depth.
External links
Lessons
Documentation
 Dyalog
 APLX
 J Dictionary, J NuVoc (as
L.
"Level of")
APL features [edit]  

Syntax  Array ∙ Function ∙ Operator ∙ Assignment 
Builtins  Primitive function ∙ Primitive operator ∙ Quad name 
Array model  Shape ∙ Rank ∙ Depth ∙ Bound ∙ Index ∙ Axis ∙ Ravel ∙ Ravel order ∙ Element ∙ Scalar ∙ Vector ∙ Matrix ∙ Simple scalar ∙ Simple array ∙ Nested array ∙ Box ∙ Cell ∙ Major cell ∙ Subarray ∙ Empty array ∙ Prototype 
User definition  Tradfn ∙ Dfn ∙ Tacit 
Concepts and paradigms  Leading axis theory ∙ Scalar extension ∙ Conformability ∙ Scalar function ∙ Glyph ∙ Identity element 
Errors  LIMIT ERROR ∙ RANK ERROR 
APL builtins [edit]  

Primitive functions  
Scalar  
Monadic  Conjugate ∙ Not ∙ Roll ∙ Type  
Dyadic  Plus ∙ Equal to (Xnor) ∙ Not Equal to (Xor)  
NonScalar  
Structural  Shape ∙ Reshape ∙ Depth ∙ Ravel ∙ Reverse  
Selection  Take ∙ Drop ∙ Unique  
Selector  
Computational  
Primitive operators  Each  
Quad names  
Constants  Index origin ∙ Migration level  
Functions  
Operators  
Other  Zilde ∙ High minus 