Reverse
⌽ ⊖
|
Reverse (⌽
, ⊖
) is a monadic function which reorders elements of the argument to go in the opposite direction along a specified axis. The name Reverse is typically used for the primitive ⌽
, which reverses along the last axis, while ⊖
, which reverses along the first axis, is called "Reverse First", "Reverse-down", or similar. In APLs with function axis, either form may use a specified axis which overrides this default choice of axis. In the leading axis model, specifying an axis is discouraged in favor of using ⊖
with the Rank operator.
Examples
Reverse flips a matrix horizontally, changing elements to go right to left, and Reverse First flip vertically, so the elements are reordered top to bottom.
x ← 10 20 30 ∘.+ ⍳6 x 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 ⌽x 16 15 14 13 12 11 26 25 24 23 22 21 36 35 34 33 32 31 ⊖x 31 32 33 34 35 36 21 22 23 24 25 26 11 12 13 14 15 16
Since a vector only has one axis, any form of Reverse will reverse along this axis.
⌽ 'Backwards text' txet sdrawkcaB ⊖⌽ 'Backwards text' ⍝ One reverse undoes the other Backwards text
Reverse with a specified axis can reverse along any of the three dimensions of the array below.
⎕←a←2 3 6⍴⍳36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 (⌽[1]a)(⌽[2]a)(⌽[3]a) ┌─────────────────┬─────────────────┬─────────────────┐ │19 20 21 22 23 24│13 14 15 16 17 18│ 6 5 4 3 2 1│ │25 26 27 28 29 30│ 7 8 9 10 11 12│12 11 10 9 8 7│ │31 32 33 34 35 36│ 1 2 3 4 5 6│18 17 16 15 14 13│ │ │ │ │ │ 1 2 3 4 5 6│31 32 33 34 35 36│24 23 22 21 20 19│ │ 7 8 9 10 11 12│25 26 27 28 29 30│30 29 28 27 26 25│ │13 14 15 16 17 18│19 20 21 22 23 24│36 35 34 33 32 31│ └─────────────────┴─────────────────┴─────────────────┘
The Rank operator can also be used to reverse along a particular axis. While Rank has no effect on Reverse (last), Reverse First with rank k
reverses the first axis of each k
-cell, or the 1+r-k
'th axis of a rank-r
array.
⌽⍤2⊢a ⍝ Same as ⌽ 5 4 3 2 1 0 11 10 9 8 7 6 17 16 15 14 13 12 23 22 21 20 19 18 29 28 27 26 25 24 35 34 33 32 31 30 ⊖⍤2⊢a ⍝ Same as ⌽[2] 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 3 4 5 30 31 32 33 34 35 24 25 26 27 28 29 18 19 20 21 22 23 (⊖⍤3⊢a)(⊖⍤2⊢a)(⊖⍤1⊢a) ┌─────────────────┬─────────────────┬─────────────────┐ │19 20 21 22 23 24│13 14 15 16 17 18│ 6 5 4 3 2 1│ │25 26 27 28 29 30│ 7 8 9 10 11 12│12 11 10 9 8 7│ │31 32 33 34 35 36│ 1 2 3 4 5 6│18 17 16 15 14 13│ │ │ │ │ │ 1 2 3 4 5 6│31 32 33 34 35 36│24 23 22 21 20 19│ │ 7 8 9 10 11 12│25 26 27 28 29 30│30 29 28 27 26 25│ │13 14 15 16 17 18│19 20 21 22 23 24│36 35 34 33 32 31│ └─────────────────┴─────────────────┴─────────────────┘
Reversing a scalar has no effect: there are no axes to reverse along.
⌽1.1 1.1
Description
In languages with function axis, exactly one argument axis may be specified.
Reversing a scalar always yields that scalar unchanged. Otherwise, Reverse operates on a particular axis of its argument. This axis is the specified axis if one is given, and otherwise the last axis for ⌽
, or the first axis for ⊖
.
The result array has the same shape and elements as the argument array, but the elements go in the opposite direction along the reversal axis: the first in the argument is last in the result, and so on. Consequently if the length of this axis is 0 or 1 then reversing has no effect.
APL model
The reverse of a vector x
may be written in any APL, assuming ⎕IO←0
, as x[(¯1+⍴x)-⍳⍴x]
. To reverse an arbitrary array Squad indexing with axis (or rank) is helpful.
ReverseAxis ← { ⎕IO←0 0=≢⍴⍵: ⍵ ⍝ Return a scalar unchanged ⍺ ← ¯1+≢⍴⍵ ⍝ Assume last axis l ← ⍺ ⌷ ⍴⍵ ⍝ Length of reversed axis (⊂l-1+⍳l) ⌷[⍺] ⍵ ⍝ Reverse with indexing }
External links
Lessons
Documentation
- Dyalog
- APLX
- J Dictionary, NuVoc (only first-axis reverse exists)
- BQN