Indices

From APL Wiki
(Redirected from Where)
Jump to navigation Jump to search
This page describes a primitive whose result is a list of indices. See Index for the page on indices themselves. See Iota for the index generator.

Indices (), or Where, is a monadic primitive function which returns the indices of all ones in a Boolean array. More generally, Indices accepts an array of non-negative integers and copies each index the corresponding number of times.

In K, the first language to include the primitive, it is called Where (&). In J, it is called Indices (I.).

Examples

In all implementations, Indices gives the indices of ones in a Boolean vector.

       0 0 1 0 0 0 1 0
3 7

In nested APLs it returns nested indices when passed a matrix or higher-dimensional array.

       3 30 0 1 0 0 0 1 0
┌───┬───┐
1 33 1
└───┴───┘
       1   ⍝ An index into a scalar is empty!
┌┐
││
└┘

If numbers higher than 1 are allowed, they indicate that the index of the number is repeated. Negative numbers are never allowed.

       3 0 2
1 1 1 3 3
Works in: dzaima/APL, NARS2000

Description and APL model

Indices replicates each index in the argument by the number of times it appears. It is identical to the APL function:

Where  {(,),⍳⍴}

The argument is restricted to be an array of non-negative integers, or, in Dyalog APL, Booleans.

Because Indices returns indices (like Iota), it is subject to index origin.

The only flat array language which implements Indices is J. Because J's Iota does not return multidimensional indices, J defines Indices to have function rank 1 so that only vector indices are used.

Mathematical interpretation

Indices may be viewed as a way to convert between two ways of writing multisets of array indices. The argument uses a dense representation indicating for each index the number of times it appears, and the result uses a sparse representation which lists all the indices contained in the set.

Relation with Replicate

Indices on a vector is closely related to Replicate: for vectors V and W, we have V V/⍳≢V and VX X[V]. While Replicate performs a transformation on another array, Indices gives a representation of that transformation using indices. The relationship between Indices and Replicate parallels that between Grade and Sort By.

K takes advantage of this relationship by removing the primitive Replicate entirely: the glyph & is paired with Minimum instead. In K, Replicate is performed by using Where and then indexing.

History

Idioms with similar behavior to Indices were widely used in APL long before it was made into a primitive. For example, the FinnAPL idiom library, first presented in 1984, lists X/⍳⍴X as "594. Indices of ones in logical vector X".

Where (&) with a Boolean argument was present in K by K2 in 1996,[1] and extended to non-negative integers by K4 in 2000. It was added to J for the domain of non-negative integer vectors as Indices (I.) in release 5.02 (2003), introducing the pairing of Indices and Interval Index now used in APL.[2]

Indices () was first introduced to APL, and the nested array model, by NARS2000. Originally defined only for vectors, the generalised definition (,R)/,⍳⍴1/R was introduced in about 2013 after some experimentation with alternatives.[3] Where () was added to Dyalog APL 16.0 (June 2017), with the nearly-identical definition {(,),⍳⍴}, but also with the restriction that the argument be Boolean. This restriction that was lifted to allow non-negative integers in 18.0 (2020). For a scalar I, Dyalog's definition gives I⍴⊂ for I, while NARS2000 returned I1. By January 2018, NARS2000 switched to Dyalog's definition, removing the discrepancy for scalar arguments.

External links

Lessons

Documentation

References

  1. Kx Systems. "K User Manual". 1998.
  2. Jsoftware. "I. Implements Indices. 2003.
  3. NARS2000 Wiki. Indices. Old revision: 2013-05-26.
APL built-ins [edit]
Primitive functions
Scalar
Monadic ConjugateNotRollType
Dyadic PlusEqual to (Xnor) ∙ Not Equal to (Xor)
Non-Scalar
Structural ShapeReshapeDepthRavelReverse
Selection TakeDropUnique
Selector
Computational
Primitive operators Each
Quad names
Constants Index originMigration level
Functions
Operators
Other ZildeHigh minus