Logarithm
- This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see Natural Logarithm.
Logarithm (⍟
), or Log, is a dyadic scalar function which computes the logarithm of the two arguments. More precisely, <syntaxhighlight lang=apl inline>X⍟Y</source> computes how much power of X equals Y, i.e. the value of R that satisfies <syntaxhighlight lang=apl inline>Y=X*R</source>. Logarithm shares the glyph <syntaxhighlight lang=apl inline>⍟</source> with the monadic arithmetic function Natural Logarithm. The glyph, a composition of the glyphs for Circular (<syntaxhighlight lang=apl inline>○</source>) and Power (<syntaxhighlight lang=apl inline>*</source>) to indicate its close mathematical ties with these two functions, is a stylised tree log.[1]
Examples
<syntaxhighlight lang=apl>
2⍟0.5 1 2 32 1024
¯1 0 1 5 10 </source>
Logarithm can be used to determine how many digits are needed to write a positive integer Y in base X:
<syntaxhighlight lang=apl>
Digits←{1+⌊⍺⍟⍵} ToBase←⊥⍣¯1 (2 Digits 100) (2 ToBase 100)
┌─┬─────────────┐ │7│1 1 0 0 1 0 0│ └─┴─────────────┘
(10 Digits 100) (10 ToBase 100)
┌─┬─────┐ │3│1 0 0│ └─┴─────┘
</source>
Properties
By definition, logarithm is the inverse of the power with the same base (left argument).
<syntaxhighlight lang=apl>
2*1 2 3 4 5
2 4 8 16 32
2⍟2 4 8 16 32
1 2 3 4 5
2 (*⍣¯1 ≡ ⍟) ⍳10
1
</source>
Reciprocal on the left or right argument gives the negated result.
<syntaxhighlight lang=apl>
2⍟÷2 4 8 16 32
¯1 ¯2 ¯3 ¯4 ¯5
(÷2)⍟2 4 8 16 32
¯1 ¯2 ¯3 ¯4 ¯5 </source>
See also
External links
Documentation
References
- ↑ McDonnell, E. E.. Recreational APL: The Story of <syntaxhighlight lang=apl inline>○</source>. APL Quote-Quad, Volume 8, Number 2, 1977-12.