Binomial
Binomial (!
) is a dyadic scalar function which gives the binomial coefficient between the two arguments. The argument order <syntaxhighlight lang=apl inline>k!n</source> is reversed compared to most of traditional mathematical notation's alternative notations, for example and , but not others, like . Binomial shares the glyph <syntaxhighlight lang=apl inline>!</source> with the monadic arithmetic function Factorial.
Examples
For non-negative integer arguments, the binomial coefficient <syntaxhighlight lang=apl inline>k!n</source> is equal to the number of ways to choose k items out of n distinct items. For example, <syntaxhighlight lang=apl inline>3!5</source> is 10 because there are 10 ways to pick 3 items out of 5: 123, 124, 125, 134, 135, 145, 234, 235, 245, 345.
<syntaxhighlight lang=apl>
0 1 2 3 4 5!5
1 5 10 10 5 1 </source>
<syntaxhighlight lang=apl inline>k!n</source> also corresponds to the k-th value (zero-indexed) on the n-th row (also zero-indexed) of Pascal's triangle.
<syntaxhighlight lang=apl>
⍉∘.!⍨ 0,⍳5
1 0 0 0 0 0 1 1 0 0 0 0 1 2 1 0 0 0 1 3 3 1 0 0 1 4 6 4 1 0 1 5 10 10 5 1
</source>
Properties
The value of <syntaxhighlight lang=apl inline>X!Y</source> equals <syntaxhighlight lang=apl inline>(!Y)÷(!X)×!Y-X</source>.
<syntaxhighlight lang=apl>
Alt←{(!⍵)÷(!⍺)×!⍵-⍺} 0 1 2 3 4 5 Alt 5
1 5 10 10 5 1 </source>
In multiple implementations where Factorial is extended to use the Gamma function , Binomial is defined to use the above equality for non-integers. In that case, the Beta function becomes closely related to the Binomial, giving the identity <syntaxhighlight lang=apl inline>÷Y×(X-1)!X+Y-1</source>.
<syntaxhighlight lang=apl>
1 1.2 1.4 1.6 1.8 2!5
5 6.105689248 7.219424686 8.281104786 9.227916704 10
2!3j2
1J5
</source>