Matrix Inverse
Matrix Inverse (⌹
) is a monadic function that returns the inverse of the simple numeric array of rank 2 or lower. It shares the glyph Quad Divide ⌹
(often called Domino) with the dyadic function Matrix Divide.
Examples
Matrix Inverse computes the ordinary inverse if the argument is a square matrix. DOMAIN ERROR is raised if the given matrix is not invertible.
⎕←M←2 2⍴3 4 4 5 3 4 4 5 ⎕←R←⌹M ¯5 4 4 ¯3 R+.×M 1 0 0 1 ⌹2 2⍴0 DOMAIN ERROR ⌹2 2⍴0 ∧
When the argument is a scalar or vector, or the given matrix has more rows than columns (r>c
where r c≡⍴X
), Matrix Inverse computes specific forms of generalized inverse called Moore-Penrose inverse. For a scalar, the result is the reciprocal of the argument; for a vector, the result equals (+X)÷X+.×+X
. For a non-square matrix, the result equals (+⍉X)⌹(+⍉X)+.×X
(where +⍉X
is the conjugate transpose of X).
(⌹2)(⌹2J1) 0.5 0.4J¯0.2 ÷2 2J1 0.5 0.4J¯0.2 (⌹3 1)(⌹2 1 1J2) ┌───────┬────────────────┐ │0.3 0.1│0.2 0.1 0.1J¯0.2│ └───────┴────────────────┘ {(+⍵)÷⍵+.×+⍵}¨ (3 1) (2 1 1J2) ┌───────┬────────────────┐ │0.3 0.1│0.2 0.1 0.1J¯0.2│ └───────┴────────────────┘ (⌹3 1)(⌹2 1 1J2) +.ר (3 1)(2 1 1J2) 1 1 ⎕←M←3 2⍴1 ¯1 0J1 1 ¯1 0J1 1 ¯1 0J1 1 ¯1 0J1 ⎕←R←⌹M 0.5J¯0.5 0.25J¯0.25 ¯0.25J¯0.25 ¯0.5J¯0.5 0.25J¯0.25 ¯0.25J¯0.25 R≡{(+⍉⍵)⌹(+⍉⍵)+.×⍵} M 1 R+.×M 1.0000E000J¯5.5511E¯17 0 ¯2.7756E¯17J05.5511E¯17 1
External links
Lesson
Documentation
- Dyalog
- APLX
- NARS2000
- J Dictionary, NuVoc (as
%.
)