Table (⍪
), or Ravel Items, is a monadic primitive function which returns a matrix formed by applying Ravel to each major cell of the given array. Table shares its glyph ⍪
with the dyadic function Catenate First.
Examples
For arrays of rank 1 or higher, the result is identical to applying Ravel to major cells. In languages where Rank operator is available, Table is equivalent to ,⍤¯1
.
{⍵(⍴⍵)}⍪5⍴⎕A
┌─┬───┐
│A│5 1│
│B│ │
│C│ │
│D│ │
│E│ │
└─┴───┘
{⍵(⍴⍵)}⍪3 4⍴⎕A
┌────┬───┐
│ABCD│3 4│
│EFGH│ │
│IJKL│ │
└────┴───┘
{⍵(⍴⍵)}⍪2 3 4⍴⎕A
┌────────────┬────┐
│ABCDEFGHIJKL│2 12│
│MNOPQRSTUVWX│ │
└────────────┴────┘
A scalar argument is converted to a 1-by-1 matrix:
{⍵(⍴⍵)}⍪123
┌───┬───┐
│123│1 1│
└───┴───┘
Properties
Table preserves the array's Tally (the number of major cells).
Table is equivalent to reshaping with the shape where all trailing axis lengths have been replaced by their [[product], or alternatively, the tally concatenated to the bound divided by the tally:
⍪2 3 4 2⍴⎕A
ABCDEFGHIJKLMNOPQRSTUVWX
YZABCDEFGHIJKLMNOPQRSTUV
{⍵⍴⍨(≢⍵),(×/⍴⍵)÷≢⍵}2 3 4 2⍴⎕A
ABCDEFGHIJKLMNOPQRSTUVWX
YZABCDEFGHIJKLMNOPQRSTUV
{⍵⍴⍨(1↑⍴⍵),(×/1↓⍴⍵)}2 3 4 2⍴⎕A
ABCDEFGHIJKLMNOPQRSTUVWX
YZABCDEFGHIJKLMNOPQRSTUV
External links
Lessons
Documentation
APL built-ins [edit]
|
Primitives (Timeline) |
Functions
|
Scalar
|
Monadic
|
Conjugate ∙ Negate ∙ Signum ∙ Reciprocal ∙ Magnitude ∙ Exponential ∙ Natural Logarithm ∙ Floor ∙ Ceiling ∙ Factorial ∙ Not ∙ Pi Times ∙ Roll ∙ Type ∙ Imaginary ∙ Square Root ∙ Round
|
Dyadic
|
Add ∙ Subtract ∙ Times ∙ Divide ∙ Residue ∙ Power ∙ Logarithm ∙ Minimum ∙ Maximum ∙ Binomial ∙ Comparison functions ∙ Boolean functions (And, Or, Nand, Nor) ∙ GCD ∙ LCM ∙ Circular ∙ Complex ∙ Root
|
Non-Scalar
|
Structural
|
Shape ∙ Reshape ∙ Tally ∙ Depth ∙ Ravel ∙ Enlist ∙ Table ∙ Catenate ∙ Reverse ∙ Rotate ∙ Transpose ∙ Raze ∙ Mix ∙ Split ∙ Enclose ∙ Nest ∙ Cut (K) ∙ Pair ∙ Link ∙ Partitioned Enclose ∙ Partition
|
Selection
|
First ∙ Pick ∙ Take ∙ Drop ∙ Unique ∙ Identity ∙ Stop ∙ Select ∙ Replicate ∙ Expand ∙ Set functions (Intersection ∙ Union ∙ Without) ∙ Bracket indexing ∙ Index ∙ Cartesian Product ∙ Sort
|
Selector
|
Index generator ∙ Grade ∙ Index Of ∙ Interval Index ∙ Indices ∙ Deal ∙ Prefix and suffix vectors
|
Computational
|
Match ∙ Not Match ∙ Membership ∙ Find ∙ Nub Sieve ∙ Encode ∙ Decode ∙ Matrix Inverse ∙ Matrix Divide ∙ Format ∙ Execute ∙ Materialise ∙ Range
|
Operators |
Monadic
|
Each ∙ Commute ∙ Constant ∙ Replicate ∙ Expand ∙ Reduce ∙ Windowed Reduce ∙ Scan ∙ Outer Product ∙ Key ∙ I-Beam ∙ Spawn ∙ Function axis ∙ Identity (Null, Ident)
|
Dyadic
|
Bind ∙ Compositions (Compose, Reverse Compose, Beside, Withe, Atop, Over) ∙ Inner Product ∙ Determinant ∙ Power ∙ At ∙ Under ∙ Rank ∙ Depth ∙ Variant ∙ Stencil ∙ Cut ∙ Direct definition (operator) ∙ Identity (Lev, Dex)
|
Quad names
|
Index origin ∙ Comparison tolerance ∙ Migration level ∙ Atomic vector
|