Inner Product
Revision as of 05:59, 6 September 2021 by Adám Brudzewsky (talk | contribs)
.
|
Inner Product (.
), is a dyadic operator, which will produce a dyadic function when applied with two dyadic functions. In APL, the inner product is a generalisation of the matrix product, which allows not only addition-multiplication, but any dyadic functions given.
Examples
x ← 1 2 3 y ← 4 5 6 x ,.(⊂,) y ⍝ visualizing of pairing ┌─────────────┐ │┌───┬───┬───┐│ ││1 4│2 5│3 6││ │└───┴───┴───┘│ └─────────────┘ x {⊂⍺,'+',⍵}.{⊂⍺,'×',⍵} y ⍝ visualizing function application in matrix multiplication ┌───────────────────────────┐ │┌─────────────────────────┐│ ││┌─────┬─┬───────────────┐││ │││1 × 4│+│┌─────┬─┬─────┐│││ │││ │ ││2 × 5│+│3 × 6││││ │││ │ │└─────┴─┴─────┘│││ ││└─────┴─┴───────────────┘││ │└─────────────────────────┘│ └───────────────────────────┘ x+.×y ⍝ matrix multiplication 32
Note that the shapes of the arguments must be compatible with each other: The last axis of the left argument must have the same length as the first axis of the right argument, or formally, for X f.g Y
it must be that (¯1↑⍴X)≡(1↑⍴Y)
. The shape of the result is (¯1↓⍴X),(1↓⍴Y)
.
For example, when applying inner product on two matrices, the number of columns in the left array must match with number of rows in the right array, otherwise we will get an error.
⎕ ← x ← 2 3⍴⍳10 1 2 3 4 5 6 ⎕ ← y ← 4 2⍴⍳10 1 2 3 4 5 6 7 8 x+.×y LENGTH ERROR x+.×y ∧ ⎕ ← y ← 3 2⍴⍳10 ⍝ reshape y to be compatible with x x+.×y 22 28 49 64
External links
Documentation