Logarithm: Difference between revisions

From APL Wiki
Jump to navigation Jump to search
No edit summary
m (Text replacement - "<source" to "<syntaxhighlight")
Tags: Mobile edit Mobile web edit
Line 1: Line 1:
:''This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see [[Natural Logarithm]].''
:''This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see [[Natural Logarithm]].''


{{Built-in|Logarithm|⍟}}, or '''Log''', is a [[dyadic]] [[scalar function]] which computes the [[wikipedia:logarithm|logarithm]] of the two [[argument|arguments]]. More precisely, <source lang=apl inline>X⍟Y</source> computes how much [[power]] of X equals Y, i.e. the value of R that satisfies <source lang=apl inline>Y=X*R</source>. Logarithm shares the [[glyph]] <source lang=apl inline>⍟</source> with the monadic arithmetic function [[Natural Logarithm]]. The [[glyph]], a composition of the glyphs for [[Circular]] (<source lang=apl inline>○</source>) and [[Power]] (<source lang=apl inline>*</source>) to indicate its close mathematical ties with these two functions, is a stylised tree log.<ref>[[E. E. McDonnell|McDonnell, E. E.]]. [https://www.jsoftware.com/papers/eem/storyofo.htm Recreational APL: The Story of <source lang=apl inline>○</source>]. [[APL Quote-Quad]], Volume 8, Number 2, 1977-12.</ref>
{{Built-in|Logarithm|⍟}}, or '''Log''', is a [[dyadic]] [[scalar function]] which computes the [[wikipedia:logarithm|logarithm]] of the two [[argument|arguments]]. More precisely, <syntaxhighlight lang=apl inline>X⍟Y</source> computes how much [[power]] of X equals Y, i.e. the value of R that satisfies <syntaxhighlight lang=apl inline>Y=X*R</source>. Logarithm shares the [[glyph]] <syntaxhighlight lang=apl inline>⍟</source> with the monadic arithmetic function [[Natural Logarithm]]. The [[glyph]], a composition of the glyphs for [[Circular]] (<syntaxhighlight lang=apl inline>○</source>) and [[Power]] (<syntaxhighlight lang=apl inline>*</source>) to indicate its close mathematical ties with these two functions, is a stylised tree log.<ref>[[E. E. McDonnell|McDonnell, E. E.]]. [https://www.jsoftware.com/papers/eem/storyofo.htm Recreational APL: The Story of <syntaxhighlight lang=apl inline>○</source>]. [[APL Quote-Quad]], Volume 8, Number 2, 1977-12.</ref>


== Examples ==
== Examples ==


<source lang=apl>
<syntaxhighlight lang=apl>
       2⍟0.5 1 2 32 1024
       2⍟0.5 1 2 32 1024
¯1 0 1 5 10
¯1 0 1 5 10
Line 12: Line 12:
Logarithm can be used to determine how many digits are needed to write a positive integer Y in base X:
Logarithm can be used to determine how many digits are needed to write a positive integer Y in base X:


<source lang=apl>
<syntaxhighlight lang=apl>
       Digits←{1+⌊⍺⍟⍵}
       Digits←{1+⌊⍺⍟⍵}
       ToBase←⊥⍣¯1
       ToBase←⊥⍣¯1
Line 29: Line 29:
By definition, logarithm is the [[inverse]] of the [[power]] with the same base (left argument).
By definition, logarithm is the [[inverse]] of the [[power]] with the same base (left argument).


<source lang=apl>
<syntaxhighlight lang=apl>
       2*1 2 3 4 5
       2*1 2 3 4 5
2 4 8 16 32
2 4 8 16 32
Line 40: Line 40:
[[Reciprocal]] on the left or right argument gives the [[negate|negated]] result.
[[Reciprocal]] on the left or right argument gives the [[negate|negated]] result.


<source lang=apl>
<syntaxhighlight lang=apl>
       2⍟÷2 4 8 16 32
       2⍟÷2 4 8 16 32
¯1 ¯2 ¯3 ¯4 ¯5
¯1 ¯2 ¯3 ¯4 ¯5

Revision as of 22:05, 10 September 2022

This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see Natural Logarithm.

Logarithm (), or Log, is a dyadic scalar function which computes the logarithm of the two arguments. More precisely, <syntaxhighlight lang=apl inline>X⍟Y</source> computes how much power of X equals Y, i.e. the value of R that satisfies <syntaxhighlight lang=apl inline>Y=X*R</source>. Logarithm shares the glyph <syntaxhighlight lang=apl inline>⍟</source> with the monadic arithmetic function Natural Logarithm. The glyph, a composition of the glyphs for Circular (<syntaxhighlight lang=apl inline>○</source>) and Power (<syntaxhighlight lang=apl inline>*</source>) to indicate its close mathematical ties with these two functions, is a stylised tree log.[1]

Examples

<syntaxhighlight lang=apl>

     2⍟0.5 1 2 32 1024

¯1 0 1 5 10 </source>

Logarithm can be used to determine how many digits are needed to write a positive integer Y in base X:

<syntaxhighlight lang=apl>

     Digits←{1+⌊⍺⍟⍵}
     ToBase←⊥⍣¯1
     (2 Digits 100) (2 ToBase 100)

┌─┬─────────────┐ │7│1 1 0 0 1 0 0│ └─┴─────────────┘

     (10 Digits 100) (10 ToBase 100)

┌─┬─────┐ │3│1 0 0│ └─┴─────┘

</source>

Works in: Dyalog APL

Properties

By definition, logarithm is the inverse of the power with the same base (left argument).

<syntaxhighlight lang=apl>

     2*1 2 3 4 5

2 4 8 16 32

     2⍟2 4 8 16 32

1 2 3 4 5

     2 (*⍣¯1 ≡ ⍟) ⍳10

1

</source>

Works in: Dyalog APL

Reciprocal on the left or right argument gives the negated result.

<syntaxhighlight lang=apl>

     2⍟÷2 4 8 16 32

¯1 ¯2 ¯3 ¯4 ¯5

     (÷2)⍟2 4 8 16 32

¯1 ¯2 ¯3 ¯4 ¯5 </source>

See also

External links

Documentation

References

APL built-ins [edit]
Primitives (Timeline) Functions
Scalar
Monadic ConjugateNegateSignumReciprocalMagnitudeExponentialNatural LogarithmFloorCeilingFactorialNotPi TimesRollTypeImaginarySquare RootRound
Dyadic AddSubtractTimesDivideResiduePowerLogarithmMinimumMaximumBinomialComparison functionsBoolean functions (And, Or, Nand, Nor) ∙ GCDLCMCircularComplexRoot
Non-Scalar
Structural ShapeReshapeTallyDepthRavelEnlistTableCatenateReverseRotateTransposeRazeMixSplitEncloseNestCut (K)PairLinkPartitioned EnclosePartition
Selection FirstPickTakeDropUniqueIdentityStopSelectReplicateExpandSet functions (IntersectionUnionWithout) ∙ Bracket indexingIndexCartesian ProductSort
Selector Index generatorGradeIndex OfInterval IndexIndicesDealPrefix and suffix vectors
Computational MatchNot MatchMembershipFindNub SieveEncodeDecodeMatrix InverseMatrix DivideFormatExecuteMaterialiseRange
Operators Monadic EachCommuteConstantReplicateExpandReduceWindowed ReduceScanOuter ProductKeyI-BeamSpawnFunction axisIdentity (Null, Ident)
Dyadic BindCompositions (Compose, Reverse Compose, Beside, Withe, Atop, Over) ∙ Inner ProductDeterminantPowerAtUnderRankDepthVariantStencilCutDirect definition (operator)Identity (Lev, Dex)
Quad names Index originComparison toleranceMigration levelAtomic vector