Magnitude: Difference between revisions

From APL Wiki
Jump to navigation Jump to search
m (Text replacement - "<source" to "<syntaxhighlight")
Line 1: Line 1:
{{Built-in|Magnitude|<nowiki>|</nowiki>}}, or '''Absolute Value''', is a [[monadic]] [[scalar function]] which gives the [[wikipedia:Absolute value|absolute value]] of a real or [[complex]] number. Magnitude shares the [[glyph]] <source lang=apl inline>|</source> with the dyadic arithmetic function [[Residue]].
{{Built-in|Magnitude|<nowiki>|</nowiki>}}, or '''Absolute Value''', is a [[monadic]] [[scalar function]] which gives the [[wikipedia:Absolute value|absolute value]] of a real or [[complex]] number. Magnitude shares the [[glyph]] <syntaxhighlight lang=apl inline>|</source> with the dyadic arithmetic function [[Residue]].


== Examples ==
== Examples ==
<source lang=apl>
<syntaxhighlight lang=apl>
       |0 1 2 ¯1 ¯2
       |0 1 2 ¯1 ¯2
0 1 2 1 2
0 1 2 1 2
Line 16: Line 16:
For real numbers, the magnitude equals the original number [[times]] (or [[Divide|divided]] by, for non-zero numbers) its [[Signum|sign]].
For real numbers, the magnitude equals the original number [[times]] (or [[Divide|divided]] by, for non-zero numbers) its [[Signum|sign]].


<source lang=apl>
<syntaxhighlight lang=apl>
       v←0 1E¯100 20 1E300 ¯1E¯100 ¯20 ¯1E300
       v←0 1E¯100 20 1E300 ¯1E¯100 ¯20 ¯1E300
       (|v)≡v××v
       (|v)≡v××v
Line 26: Line 26:
For complex numbers, the magnitude is defined as the Euclidean distance from the number 0 on the [[wikipedia:Complex plane|complex plane]].
For complex numbers, the magnitude is defined as the Euclidean distance from the number 0 on the [[wikipedia:Complex plane|complex plane]].


<source lang=apl>
<syntaxhighlight lang=apl>
       Dist←{0.5*⍨+.×⍨9 11○⍵} ⍝ Square root of square sum of real and imaginary parts
       Dist←{0.5*⍨+.×⍨9 11○⍵} ⍝ Square root of square sum of real and imaginary parts
       Dist¨ 0 1J2 ¯3J4
       Dist¨ 0 1J2 ¯3J4
Line 36: Line 36:
Any real or complex number is equal to the [[Times|product]] of its [[signum]] and magnitude.
Any real or complex number is equal to the [[Times|product]] of its [[signum]] and magnitude.


<source lang=apl>
<syntaxhighlight lang=apl>
       (⊢ ≡ ××|) 0 1 1E¯300 ¯2.5 0J3.5 ¯3J¯4
       (⊢ ≡ ××|) 0 1 1E¯300 ¯2.5 0J3.5 ¯3J¯4
1
1

Revision as of 21:30, 10 September 2022

|

Magnitude (|), or Absolute Value, is a monadic scalar function which gives the absolute value of a real or complex number. Magnitude shares the glyph <syntaxhighlight lang=apl inline>|</source> with the dyadic arithmetic function Residue.

Examples

<syntaxhighlight lang=apl>

     |0 1 2 ¯1 ¯2

0 1 2 1 2

     |0J2 ¯3J¯4

2 5 </source>

Properties

The magnitude of any number is a non-negative real number.

For real numbers, the magnitude equals the original number times (or divided by, for non-zero numbers) its sign.

<syntaxhighlight lang=apl>

     v←0 1E¯100 20 1E300 ¯1E¯100 ¯20 ¯1E300
     (|v)≡v××v

1

     (|v)=v÷×v

0 1 1 1 1 1 1 </source>

For complex numbers, the magnitude is defined as the Euclidean distance from the number 0 on the complex plane.

<syntaxhighlight lang=apl>

     Dist←{0.5*⍨+.×⍨9 11○⍵} ⍝ Square root of square sum of real and imaginary parts
     Dist¨ 0 1J2 ¯3J4

0 2.236067977 5

     |0 1J2 ¯3J4

0 2.236067977 5

</source>

Works in: Dyalog APL

Any real or complex number is equal to the product of its signum and magnitude.

<syntaxhighlight lang=apl>

     (⊢ ≡ ××|) 0 1 1E¯300 ¯2.5 0J3.5 ¯3J¯4

1

</source>

Works in: Dyalog APL

See also

External links

Documentation

APL built-ins [edit]
Primitives (Timeline) Functions
Scalar
Monadic ConjugateNegateSignumReciprocalMagnitudeExponentialNatural LogarithmFloorCeilingFactorialNotPi TimesRollTypeImaginarySquare RootRound
Dyadic AddSubtractTimesDivideResiduePowerLogarithmMinimumMaximumBinomialComparison functionsBoolean functions (And, Or, Nand, Nor) ∙ GCDLCMCircularComplexRoot
Non-Scalar
Structural ShapeReshapeTallyDepthRavelEnlistTableCatenateReverseRotateTransposeRazeMixSplitEncloseNestCut (K)PairLinkPartitioned EnclosePartition
Selection FirstPickTakeDropUniqueIdentityStopSelectReplicateExpandSet functions (IntersectionUnionWithout) ∙ Bracket indexingIndexCartesian ProductSort
Selector Index generatorGradeIndex OfInterval IndexIndicesDealPrefix and suffix vectors
Computational MatchNot MatchMembershipFindNub SieveEncodeDecodeMatrix InverseMatrix DivideFormatExecuteMaterialiseRange
Operators Monadic EachCommuteConstantReplicateExpandReduceWindowed ReduceScanOuter ProductKeyI-BeamSpawnFunction axisIdentity (Null, Ident)
Dyadic BindCompositions (Compose, Reverse Compose, Beside, Withe, Atop, Over) ∙ Inner ProductDeterminantPowerAtUnderRankDepthVariantStencilCutDirect definition (operator)Identity (Lev, Dex)
Quad names Index originComparison toleranceMigration levelAtomic vector