LCM: Difference between revisions

From APL Wiki
Jump to navigation Jump to search
m (→‎Extended definition: Change the heading to Examples)
m (Text replacement - "</source>" to "</syntaxhighlight>")
Tags: Mobile edit Mobile web edit
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
For positive integer arguments, the least common multiple is the smallest positive number which is divisible by both numbers. If one of the arguments is zero, the LCM function returns zero.
For positive integer arguments, the least common multiple is the smallest positive number which is divisible by both numbers. If one of the arguments is zero, the LCM function returns zero.


<source lang=apl>
<syntaxhighlight lang=apl>
       ∘.∧⍨ 0,⍳10
       ∘.∧⍨ 0,⍳10
0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0
Line 18: Line 18:
0  9 18  9 36 45 18 63 72  9 90
0  9 18  9 36 45 18 63 72  9 90
0 10 10 30 20 10 30 70 40 90 10
0 10 10 30 20 10 30 70 40 90 10
</source>{{Works in|[[Dyalog APL]]}}
</syntaxhighlight>{{Works in|[[Dyalog APL]]}}


While the mathematical definition of LCM does not cover non-integers, some implementations accept them as arguments. In this case, the return value of <source lang=apl inline>R←X∧Y</source> is chosen so that both <source lang=apl inline>R÷X</source> and <source lang=apl inline>R÷Y</source> are integers (or [[wikipedia:Gaussian integer|Gaussian integers]], when X and/or Y are [[complex]] numbers).
While the mathematical definition of LCM does not cover non-integers, some implementations accept them as arguments. In this case, the return value of <syntaxhighlight lang=apl inline>R←X∧Y</syntaxhighlight> is chosen so that both <syntaxhighlight lang=apl inline>R÷X</syntaxhighlight> and <syntaxhighlight lang=apl inline>R÷Y</syntaxhighlight> are integers (or [[wikipedia:Gaussian integer|Gaussian integers]], when X and/or Y are [[complex]] numbers).


<source lang=apl>
<syntaxhighlight lang=apl>
       0.9∧25÷6
       0.9∧25÷6
112.5
112.5
Line 31: Line 31:
       6J2÷2J2 3J1
       6J2÷2J2 3J1
2J¯1 2
2J¯1 2
</source>{{Works in|[[Dyalog APL]]}}
</syntaxhighlight>{{Works in|[[Dyalog APL]]}}


== Description ==
== Description ==
Line 41: Line 41:
=== Documentation ===
=== Documentation ===


* [http://help.dyalog.com/17.1/#Language/Primitive%20Functions/And%20Lowest%20Common%20Multiple.htm Dyalog]
* [https://help.dyalog.com/17.1/#Language/Primitive%20Functions/And%20Lowest%20Common%20Multiple.htm Dyalog]
* J [https://www.jsoftware.com/help/dictionary/d111.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/stardot#dyadic NuVoc]
* J [https://www.jsoftware.com/help/dictionary/d111.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/stardot#dyadic NuVoc]
{{APL built-ins}}[[Category:Primitive functions]][[Category:Scalar dyadic functions]]
{{APL built-ins}}[[Category:Primitive functions]][[Category:Scalar dyadic functions]]

Latest revision as of 21:28, 10 September 2022

LCM () is a dyadic scalar function which returns the Least Common Multiple of two integer arguments. It is an extension of And which maintains the same results on Boolean arguments and the same identity element 1, in the same way that GCD extends Or.

Examples

For positive integer arguments, the least common multiple is the smallest positive number which is divisible by both numbers. If one of the arguments is zero, the LCM function returns zero.

      ∘.∧⍨ 0,⍳10
0  0  0  0  0  0  0  0  0  0  0
0  1  2  3  4  5  6  7  8  9 10
0  2  2  6  4 10  6 14  8 18 10
0  3  6  3 12 15  6 21 24  9 30
0  4  4 12  4 20 12 28  8 36 20
0  5 10 15 20  5 30 35 40 45 10
0  6  6  6 12 30  6 42 24 18 30
0  7 14 21 28 35 42  7 56 63 70
0  8  8 24  8 40 24 56  8 72 40
0  9 18  9 36 45 18 63 72  9 90
0 10 10 30 20 10 30 70 40 90 10
Works in: Dyalog APL

While the mathematical definition of LCM does not cover non-integers, some implementations accept them as arguments. In this case, the return value of R←X∧Y is chosen so that both R÷X and R÷Y are integers (or Gaussian integers, when X and/or Y are complex numbers).

      0.9∧25÷6
112.5
      112.5÷0.9(25÷6)
125 27
      2J2∧3J1
6J2
      6J2÷2J2 3J1
2J¯1 2
Works in: Dyalog APL

Description

The LCM of two numbers is their product divided by the GCD.

External links

Documentation

APL built-ins [edit]
Primitives (Timeline) Functions
Scalar
Monadic ConjugateNegateSignumReciprocalMagnitudeExponentialNatural LogarithmFloorCeilingFactorialNotPi TimesRollTypeImaginarySquare RootRound
Dyadic AddSubtractTimesDivideResiduePowerLogarithmMinimumMaximumBinomialComparison functionsBoolean functions (And, Or, Nand, Nor) ∙ GCDLCMCircularComplexRoot
Non-Scalar
Structural ShapeReshapeTallyDepthRavelEnlistTableCatenateReverseRotateTransposeRazeMixSplitEncloseNestCut (K)PairLinkPartitioned EnclosePartition
Selection FirstPickTakeDropUniqueIdentityStopSelectReplicateExpandSet functions (IntersectionUnionWithout) ∙ Bracket indexingIndexCartesian ProductSort
Selector Index generatorGradeIndex OfInterval IndexIndicesDealPrefix and suffix vectors
Computational MatchNot MatchMembershipFindNub SieveEncodeDecodeMatrix InverseMatrix DivideFormatExecuteMaterialiseRange
Operators Monadic EachCommuteConstantReplicateExpandReduceWindowed ReduceScanOuter ProductKeyI-BeamSpawnFunction axisIdentity (Null, Ident)
Dyadic BindCompositions (Compose, Reverse Compose, Beside, Withe, Atop, Over) ∙ Inner ProductDeterminantPowerAtUnderRankDepthVariantStencilCutDirect definition (operator)Identity (Lev, Dex)
Quad names Index originComparison toleranceMigration levelAtomic vector