Logarithm: Difference between revisions
Jump to navigation
Jump to search
m (Text replacement - "http://help.dyalog.com" to "https://help.dyalog.com") |
No edit summary |
||
Line 1: | Line 1: | ||
:''This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see [[Natural Logarithm]].'' | :''This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see [[Natural Logarithm]].'' | ||
{{Built-in|Logarithm|⍟}}, or '''Log''', is a [[dyadic]] [[scalar function]] which computes the [[wikipedia:logarithm|logarithm]] of the two [[argument|arguments]]. More precisely, <source lang=apl inline>X⍟Y</source> computes how much [[power]] of X equals Y, i.e. the value of R that satisfies <source lang=apl inline>Y=X*R</source>. Logarithm shares the [[glyph]] <source lang=apl inline>⍟</source> with the monadic arithmetic function [[Natural Logarithm]]. The [[glyph]], a composition of the glyphs for [[Circular]] (<source lang=apl inline>○</source>) and [[Power]] (<source lang=apl inline>*</source>) to indicate its close mathematical ties with these two functions, is a stylised tree log. | {{Built-in|Logarithm|⍟}}, or '''Log''', is a [[dyadic]] [[scalar function]] which computes the [[wikipedia:logarithm|logarithm]] of the two [[argument|arguments]]. More precisely, <source lang=apl inline>X⍟Y</source> computes how much [[power]] of X equals Y, i.e. the value of R that satisfies <source lang=apl inline>Y=X*R</source>. Logarithm shares the [[glyph]] <source lang=apl inline>⍟</source> with the monadic arithmetic function [[Natural Logarithm]]. The [[glyph]], a composition of the glyphs for [[Circular]] (<source lang=apl inline>○</source>) and [[Power]] (<source lang=apl inline>*</source>) to indicate its close mathematical ties with these two functions, is a stylised tree log.<ref>[[E. E. McDonnell|McDonnell, E. E.]]. [https://www.jsoftware.com/papers/eem/storyofo.htm Recreational APL: The Story of <source lang=apl inline>○</source>]. [[APL Quote-Quad]], Volume 8, Number 2, 1977-12.</ref> | ||
== Examples == | == Examples == | ||
Line 57: | Line 57: | ||
* [http://microapl.com/apl_help/ch_020_020_220.htm APLX] | * [http://microapl.com/apl_help/ch_020_020_220.htm APLX] | ||
* J [https://www.jsoftware.com/help/dictionary/d201.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/hatdot#dyadic NuVoc] | * J [https://www.jsoftware.com/help/dictionary/d201.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/hatdot#dyadic NuVoc] | ||
{{APL built-ins}}[[Category:Primitive functions]][[Category:Scalar | |||
== References == | |||
<references/> | |||
{{APL built-ins}}[[Category:Primitive functions]][[Category:Scalar monadic functions]] |
Revision as of 19:27, 22 October 2020
- This page describes the dyadic arithmetic function. For the monadic natural logarithm function, see Natural Logarithm.
⍟
|
Logarithm (⍟
), or Log, is a dyadic scalar function which computes the logarithm of the two arguments. More precisely, X⍟Y
computes how much power of X equals Y, i.e. the value of R that satisfies Y=X*R
. Logarithm shares the glyph ⍟
with the monadic arithmetic function Natural Logarithm. The glyph, a composition of the glyphs for Circular (○
) and Power (*
) to indicate its close mathematical ties with these two functions, is a stylised tree log.[1]
Examples
2⍟0.5 1 2 32 1024 ¯1 0 1 5 10
Logarithm can be used to determine how many digits are needed to write a positive integer Y in base X:
Digits←{1+⌊⍺⍟⍵} ToBase←⊥⍣¯1 (2 Digits 100) (2 ToBase 100) ┌─┬─────────────┐ │7│1 1 0 0 1 0 0│ └─┴─────────────┘ (10 Digits 100) (10 ToBase 100) ┌─┬─────┐ │3│1 0 0│ └─┴─────┘
Works in: Dyalog APL
Properties
By definition, logarithm is the inverse of the power with the same base (left argument).
2*1 2 3 4 5 2 4 8 16 32 2⍟2 4 8 16 32 1 2 3 4 5 2 (*⍣¯1 ≡ ⍟) ⍳10 1
Works in: Dyalog APL
Reciprocal on the left or right argument gives the negated result.
2⍟÷2 4 8 16 32 ¯1 ¯2 ¯3 ¯4 ¯5 (÷2)⍟2 4 8 16 32 ¯1 ¯2 ¯3 ¯4 ¯5
See also
External links
Documentation
References
- ↑ McDonnell, E. E.. Recreational APL: The Story of
○
. APL Quote-Quad, Volume 8, Number 2, 1977-12.