LCM: Difference between revisions

From APL Wiki
Jump to navigation Jump to search
(Redirected page to And#Extended definition)
Tag: New redirect
 
(Separate from And)
Tag: Removed redirect
Line 1: Line 1:
#REDIRECT [[And#Extended_definition]]
{{Built-in|LCM|∧}} is a [[dyadic]] [[scalar function]] which returns the '''[[wikipedia:Least common multiple|Least Common Multiple]]''' of two integer arguments. It is an extension of [[And]] which maintains the same results on [[Boolean]] arguments and the same [[identity element]] 1, in the same way that [[GCD]] extends [[Or]].
 
== Extended definition ==
 
For positive integer arguments, the least common multiple is the smallest positive number which is divisible by both numbers. If one of the arguments is zero, the LCM function returns zero.
 
<source lang=apl>
      ∘.∧⍨ 0,⍳10
0  0  0  0  0  0  0  0  0  0  0
0  1  2  3  4  5  6  7  8  9 10
0  2  2  6  4 10  6 14  8 18 10
0  3  6  3 12 15  6 21 24  9 30
0  4  4 12  4 20 12 28  8 36 20
0  5 10 15 20  5 30 35 40 45 10
0  6  6  6 12 30  6 42 24 18 30
0  7 14 21 28 35 42  7 56 63 70
0  8  8 24  8 40 24 56  8 72 40
0  9 18  9 36 45 18 63 72  9 90
0 10 10 30 20 10 30 70 40 90 10
</source>{{Works in|[[Dyalog APL]]}}
 
While the mathematical definition of LCM does not cover non-integers, some implementations accept them as arguments. In this case, the return value of <source lang=apl inline>R←X∧Y</source> is chosen so that both <source lang=apl inline>R÷X</source> and <source lang=apl inline>R÷Y</source> are integers (or [[wikipedia:Gaussian integer|Gaussian integers]], when X and/or Y are [[complex]] numbers).
 
<source lang=apl>
      0.9∧25÷6
112.5
      112.5÷0.9(25÷6)
125 27
      2J2∧3J1
6J2
      6J2÷2J2 3J1
2J¯1 2
</source>{{Works in|[[Dyalog APL]]}}
 
== Description ==
 
The LCM of two numbers is their [[product]] [[divide]]d by the [[GCD]].
 
== External links ==
 
=== Documentation ===
 
* [http://help.dyalog.com/17.1/#Language/Primitive%20Functions/And%20Lowest%20Common%20Multiple.htm Dyalog]
* J [https://www.jsoftware.com/help/dictionary/d111.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/stardot#dyadic NuVoc]
{{APL built-ins}}[[Category:Primitive functions]][[Category:Scalar dyadic functions]]

Revision as of 15:07, 1 June 2020

LCM () is a dyadic scalar function which returns the Least Common Multiple of two integer arguments. It is an extension of And which maintains the same results on Boolean arguments and the same identity element 1, in the same way that GCD extends Or.

Extended definition

For positive integer arguments, the least common multiple is the smallest positive number which is divisible by both numbers. If one of the arguments is zero, the LCM function returns zero.

      ∘.∧⍨ 0,⍳10
0  0  0  0  0  0  0  0  0  0  0
0  1  2  3  4  5  6  7  8  9 10
0  2  2  6  4 10  6 14  8 18 10
0  3  6  3 12 15  6 21 24  9 30
0  4  4 12  4 20 12 28  8 36 20
0  5 10 15 20  5 30 35 40 45 10
0  6  6  6 12 30  6 42 24 18 30
0  7 14 21 28 35 42  7 56 63 70
0  8  8 24  8 40 24 56  8 72 40
0  9 18  9 36 45 18 63 72  9 90
0 10 10 30 20 10 30 70 40 90 10
Works in: Dyalog APL

While the mathematical definition of LCM does not cover non-integers, some implementations accept them as arguments. In this case, the return value of R←X∧Y is chosen so that both R÷X and R÷Y are integers (or Gaussian integers, when X and/or Y are complex numbers).

      0.9∧25÷6
112.5
      112.5÷0.9(25÷6)
125 27
      2J2∧3J1
6J2
      6J2÷2J2 3J1
2J¯1 2
Works in: Dyalog APL

Description

The LCM of two numbers is their product divided by the GCD.

External links

Documentation

APL built-ins [edit]
Primitives (Timeline) Functions
Scalar
Monadic ConjugateNegateSignumReciprocalMagnitudeExponentialNatural LogarithmFloorCeilingFactorialNotPi TimesRollTypeImaginarySquare RootRound
Dyadic AddSubtractTimesDivideResiduePowerLogarithmMinimumMaximumBinomialComparison functionsBoolean functions (And, Or, Nand, Nor) ∙ GCDLCMCircularComplexRoot
Non-Scalar
Structural ShapeReshapeTallyDepthRavelEnlistTableCatenateReverseRotateTransposeRazeMixSplitEncloseNestCut (K)PairLinkPartitioned EnclosePartition
Selection FirstPickTakeDropUniqueIdentityStopSelectReplicateExpandSet functions (IntersectionUnionWithout) ∙ Bracket indexingIndexCartesian ProductSort
Selector Index generatorGradeIndex OfInterval IndexIndicesDealPrefix and suffix vectors
Computational MatchNot MatchMembershipFindNub SieveEncodeDecodeMatrix InverseMatrix DivideFormatExecuteMaterialiseRange
Operators Monadic EachCommuteConstantReplicateExpandReduceWindowed ReduceScanOuter ProductKeyI-BeamSpawnFunction axisIdentity (Null, Ident)
Dyadic BindCompositions (Compose, Reverse Compose, Beside, Withe, Atop, Over) ∙ Inner ProductDeterminantPowerAtUnderRankDepthVariantStencilCutDirect definition (operator)Identity (Lev, Dex)
Quad names Index originComparison toleranceMigration levelAtomic vector