Major cell: Difference between revisions
m (3 revisions imported: Migrate from miraheze) |
(Called items in A+ and J) |
||
Line 1: | Line 1: | ||
In the APL [[array model]] and [[leading axis theory]], a '''major cell''' is a [[cell]] of an array which has [[rank]] one smaller than the rank of the array, or equal to it if the array is a [[scalar]]. The number of major cells in an array is its [[Tally]], and a function can be called on the major cells of an array individually by applying it with rank <source lang=apl inline>¯1</source> using the [[Rank operator]]. Functions designed to follow leading axis theory often manipulate the major cells of an array. For example, [[Reverse First]] (<source lang=apl inline>⊖</source>) is considered the primary form of [[Reverse]] in leading-axis languages because it can be interpreted as reversing the major cells of its argument; [[J]] removes last-axis Reverse entirely. | In the APL [[array model]] and [[leading axis theory]], a '''major cell''', or '''item''', is a [[cell]] of an array which has [[rank]] one smaller than the rank of the array, or equal to it if the array is a [[scalar]]. The number of major cells in an array is its [[Tally]], and a function can be called on the major cells of an array individually by applying it with rank <source lang=apl inline>¯1</source> using the [[Rank operator]]. Functions designed to follow leading axis theory often manipulate the major cells of an array. For example, [[Reverse First]] (<source lang=apl inline>⊖</source>) is considered the primary form of [[Reverse]] in leading-axis languages because it can be interpreted as reversing the major cells of its argument; [[J]] removes last-axis Reverse entirely. | ||
== Examples == | == Examples == |
Revision as of 02:27, 18 December 2019
In the APL array model and leading axis theory, a major cell, or item, is a cell of an array which has rank one smaller than the rank of the array, or equal to it if the array is a scalar. The number of major cells in an array is its Tally, and a function can be called on the major cells of an array individually by applying it with rank ¯1
using the Rank operator. Functions designed to follow leading axis theory often manipulate the major cells of an array. For example, Reverse First (⊖
) is considered the primary form of Reverse in leading-axis languages because it can be interpreted as reversing the major cells of its argument; J removes last-axis Reverse entirely.
Examples
A
is an array with shape 3 4
. Using Tally we see that the number of major cells in A
is the first element of the shape, 3
:
⊢A ← 5 3 1 ∘.∧ 2 3 4 5 10 15 20 5 6 3 12 15 2 3 4 5 ≢A 3
We can separate A
's major cells using Enclose with rank ¯1
:
⊂⍤¯1 ⊢A ┌──────────┬─────────┬───────┐ │10 15 20 5│6 3 12 15│2 3 4 5│ └──────────┴─────────┴───────┘
Given another array B
we can search for cells of B
which match major cells of B
. High-rank Index-of always searches for right argument cells whose rank matches the rank of a left argument major cell: if the right argument is a vector and not a matrix then it searches for the entire vector rather than its major cells (which are scalars).
⊢B ← ↑ 4,/⍳6 1 2 3 4 2 3 4 5 3 4 5 6 A ⍳ B 4 3 4 A ⍳ 2 3 4 5 3
APL features [edit] | |
---|---|
Built-ins | Primitives (functions, operators) ∙ Quad name |
Array model | Shape ∙ Rank ∙ Depth ∙ Bound ∙ Index (Indexing) ∙ Axis ∙ Ravel ∙ Ravel order ∙ Element ∙ Scalar ∙ Vector ∙ Matrix ∙ Simple scalar ∙ Simple array ∙ Nested array ∙ Cell ∙ Major cell ∙ Subarray ∙ Empty array ∙ Prototype |
Data types | Number (Boolean, Complex number) ∙ Character (String) ∙ Box ∙ Namespace ∙ Function array |
Concepts and paradigms | Conformability (Scalar extension, Leading axis agreement) ∙ Scalar function (Pervasion) ∙ Identity element ∙ Complex floor ∙ Array ordering (Total) ∙ Tacit programming (Function composition, Close composition) ∙ Glyph ∙ Leading axis theory ∙ Major cell search ∙ First-class function |
Errors | LIMIT ERROR ∙ RANK ERROR ∙ SYNTAX ERROR ∙ DOMAIN ERROR ∙ LENGTH ERROR ∙ INDEX ERROR ∙ VALUE ERROR ∙ EVOLUTION ERROR |