Tacit programming: Difference between revisions

From APL Wiki
Jump to navigation Jump to search
Line 95: Line 95:


=== Component of a vector in the direction of another vector ===
=== Component of a vector in the direction of another vector ===
Sometimes a train can make an expression nicely resemble its equivalent definition in [[Comparison_with_traditional_mathematics|traditional mathematical notation]]. As an example, here is a program to compute the component of a vector '''a''' in the direction of another vector '''b'''.
Sometimes a train can make an expression nicely resemble its equivalent definition in traditional mathematical notation. As an example, here is a program to compute the component of a vector <math>\textbf{a}</math> in the direction of another vector <math>\textbf{b}</math>:
 
:::<math>\textbf{a}_\textbf{b} = (\textbf{a}\cdot\hat{\textbf{b}})\hat{\textbf{b}}</math>
<div style="text-align:center">
<math>\textbf{a}_\textbf{b} = (\textbf{a}\cdot\hat{\textbf{b}})\hat{\textbf{b}}</math>
</div>
 
<source lang=apl>
<source lang=apl>
       Sqrt ← *∘0.5            Square root  
       Root ← *∘÷⍨              Nth root
       Norm ← Sqrt+.×⍨         ⍝ Magnitude (norm) of numeric vector in Euclidean space
       Norm ← 2 Root +.×⍨       ⍝ Magnitude (norm) of numeric vector in Euclidean space
       Unit ← ÷∘Norm⍨          ⍝ Unit vector in direction of vector ⍵
       Unit ← ⊢÷Norm            ⍝ Unit vector in direction of vector ⍵
       InDirOf ← (⊢×+.×)∘Unit  ⍝ Component of vector ⍺ in direction of vector ⍵
       InDirOf ← (⊢×+.×)∘Unit  ⍝ Component of vector ⍺ in direction of vector ⍵
       3 5 2 InDirOf 0 0 1      ⍝ Trivial example
       3 5 2 InDirOf 0 0 1      ⍝ Trivial example
0 0 2
0 0 2
</source>
</source>
 
For a more parallel comparison of the notations, see the [[Comparison_with_traditional_mathematics#Practical_example|comparison with traditional mathematics]].  
In particular, the definition of <source inline lang=apl>InDirOf</source> resembles the definition in traditional mathematical notation:
<div style="text-align:center">
{| class="wikitable c" style="margin: 1em auto 1em auto"
! style="width:33%" | Traditional notation !! style="width:33%" | APL
|-
| <math>|\textbf{b}|</math> || <source lang=apl>(Sqrt+.×⍨) b</source>
|-
| <math>\hat{\textbf{b}} = \frac{\textbf{b}}{|\textbf{b}|}</math>  ||  <source lang=apl>(÷∘Norm⍨) b</source>
|-
| <math>\textbf{a}\cdot\textbf{b}</math>  ||  <source lang=apl>a +.× b</source>
|-
| <math>(\textbf{a}\cdot\hat{\textbf{b}})\hat{\textbf{b}}</math>  ||  <source lang=apl>a (⊢×+.×)∘Unit b</source>
|}
</div>
 
{{APL syntax}}
{{APL syntax}}

Revision as of 14:00, 9 January 2020

Tacit functions apply to implicit arguments following a small set of rules. This is in contrast to the explicit use of arguments in dfns (⍺ ⍵) and tradfns (which have named arguments). Known dialects which implement trains are Dyalog APL, dzaima/APL, ngn/apl and NARS2000.

Primitives

All primitive functions are tacit. Some APLs allow primitive functions to be named.

      plus ← +
      times ← ×
      6 times 3 plus 5
48

Derived functions

Functions derived from an operator and operand are tacit.

      sum ← +/
      sum ⍳10
55

Trains

A train is a series of functions in isolation. An isolated function is either surrounded by parentheses or named. Arguments are processed by the following rules:

A 2-train is an atop:

  (g h) ⍵ ⬄ g (  h ⍵)
⍺ (g h) ⍵ ⬄ g (⍺ h ⍵)

A 3-train is a fork:

  (f g h) ⍵ ⬄ (  f ⍵) g (  h ⍵)
⍺ (f g h) ⍵ ⬄ (⍺ f ⍵) g (⍺ h ⍵)

The left tine of a fork (but not an atop) can be an array:

  (A g h) ⍵ ⬄ A g (  h ⍵)
⍺ (A g h) ⍵ ⬄ A g (⍺ h ⍵)

Examples

One of the major benefits of tacit programming is the ability to convey a short, well-defined idea as an isolated expression. This aids both human readability (semantic density) and the computer's ability to interpret code, potentially executing special code for particular idioms.

Plus and minus

      (+,-)2
2 ¯2
      1 2 3 (+,-) 4
5 6 7 ¯3 ¯2 ¯1
      (2 3⍴0) (+,-) 1
1 1 1 ¯1 ¯1 ¯1
1 1 1 ¯1 ¯1 ¯1

Arithmetic mean

      (+⌿÷≢) ⍳10       ⍝ Mean of the first ten integers
5.5
      (+⌿÷≢) 5 4⍴⍳4    ⍝ Mean of columns in a matrix
1 2 3 4

Fractions

We can convert decimal numbers to fractions. For example, we can convert to the improper fraction with

      (1∧⊢,÷)2.625
21 8

Alternatively, we can convert it to the mixed fraction with A mixed fraction:

      (1∧0 1∘⊤,÷)2.625
2 5 8

Is it a palindrome?

      (⌽≡⊢)'racecar'
1
      (⌽≡⊢)'racecat'
0

Split delimited text

      ','(≠⊆⊢)'comma,delimited,text'
┌─────┬─────────┬────┐
│comma│delimited│text│
└─────┴─────────┴────┘
      ' '(≠⊆⊢)'space delimited text'
┌─────┬─────────┬────┐
│space│delimited│text│
└─────┴─────────┴────┘

Component of a vector in the direction of another vector

Sometimes a train can make an expression nicely resemble its equivalent definition in traditional mathematical notation. As an example, here is a program to compute the component of a vector in the direction of another vector :

      Root ← *∘÷⍨              ⍝ Nth root
      Norm ← 2 Root +.×⍨       ⍝ Magnitude (norm) of numeric vector in Euclidean space
      Unit ← ⊢÷Norm            ⍝ Unit vector in direction of vector ⍵
      InDirOf ← (⊢×+.×)∘Unit   ⍝ Component of vector ⍺ in direction of vector ⍵
      3 5 2 InDirOf 0 0 1      ⍝ Trivial example
0 0 2

For a more parallel comparison of the notations, see the comparison with traditional mathematics.

APL syntax [edit]
General Comparison with traditional mathematicsPrecedenceTacit programming (Train, Hook, Split composition)
Array Numeric literalStringStrand notationObject literalArray notation (design considerations)
Function ArgumentFunction valenceDerived functionDerived operatorNiladic functionMonadic functionDyadic functionAmbivalent functionDefined function (traditional)DfnFunction train
Operator OperandOperator valenceTradopDopDerived operator
Assignment MultipleIndexedSelectiveModified
Other Function axisBracket indexingBranchStatement separatorQuad nameSystem commandUser commandKeywordDot notationFunction-operator overloadingControl structureComment