Simple examples: Difference between revisions

Jump to navigation Jump to search
m
Text replacement - "<source" to "<syntaxhighlight"
(The specific dialects are not important here, and the "try it" link doesn't actually try it.)
m (Text replacement - "<source" to "<syntaxhighlight")
Line 4: Line 4:


Here is an APL program to calculate the average (arithmetic mean) of a list of numbers, written as a [[dfn]]:
Here is an APL program to calculate the average (arithmetic mean) of a list of numbers, written as a [[dfn]]:
<source lang=apl>
<syntaxhighlight lang=apl>
       {(+⌿⍵)÷≢⍵}  
       {(+⌿⍵)÷≢⍵}  
</source>
</source>
It is unnamed: the enclosing braces mark it as a function definition. It can be assigned a name for use later, or used anonymously in a more complex expression.
It is unnamed: the enclosing braces mark it as a function definition. It can be assigned a name for use later, or used anonymously in a more complex expression.


The <source lang=apl inline>⍵</source> refers to the argument of the function, a list (or 1-dimensional array) of numbers. The <source lang=apl inline>≢</source> denotes the [[tally]] function, which returns here the length of (number of elements in) the argument <source lang=apl inline>⍵</source>. The divide symbol <source lang=apl inline>÷</source> has its usual meaning.
The <syntaxhighlight lang=apl inline>⍵</source> refers to the argument of the function, a list (or 1-dimensional array) of numbers. The <syntaxhighlight lang=apl inline>≢</source> denotes the [[tally]] function, which returns here the length of (number of elements in) the argument <syntaxhighlight lang=apl inline>⍵</source>. The divide symbol <syntaxhighlight lang=apl inline>÷</source> has its usual meaning.


The parenthesised <source lang=apl inline>+⌿⍵</source> denotes the sum of all the elements of <source lang=apl inline>⍵</source>. The <source lang=apl inline>⌿</source> operator combines with the <source lang=apl inline>+</source> function: the <source lang=apl inline>⌿</source> fixes the <source lang=apl inline>+</source> function between each element of <source lang=apl inline>⍵</source>, so that
The parenthesised <syntaxhighlight lang=apl inline>+⌿⍵</source> denotes the sum of all the elements of <syntaxhighlight lang=apl inline>⍵</source>. The <syntaxhighlight lang=apl inline>⌿</source> operator combines with the <syntaxhighlight lang=apl inline>+</source> function: the <syntaxhighlight lang=apl inline>⌿</source> fixes the <syntaxhighlight lang=apl inline>+</source> function between each element of <syntaxhighlight lang=apl inline>⍵</source>, so that
<source lang=apl>
<syntaxhighlight lang=apl>
       +⌿ 1 2 3 4 5 6
       +⌿ 1 2 3 4 5 6
21
21
</source>
</source>
is the same as
is the same as
<source lang=apl>
<syntaxhighlight lang=apl>
       1+2+3+4+5+6
       1+2+3+4+5+6
21
21
</source>
</source>
=== Operators ===
=== Operators ===
[[Operator]]s like <source lang=apl inline>⌿</source> can be used to derive new functions not only from [[primitive function]]s like <source lang=apl inline>+</source>, but also from defined functions. For example
[[Operator]]s like <syntaxhighlight lang=apl inline>⌿</source> can be used to derive new functions not only from [[primitive function]]s like <syntaxhighlight lang=apl inline>+</source>, but also from defined functions. For example
<source lang=apl>
<syntaxhighlight lang=apl>
       {⍺,', ',⍵}⌿
       {⍺,', ',⍵}⌿
</source>
</source>
will transform a list of strings representing words into a comma-separated list:
will transform a list of strings representing words into a comma-separated list:
<source lang=apl>
<syntaxhighlight lang=apl>
       {⍺,', ',⍵}⌿'cow' 'sheep' 'cat' 'dog'
       {⍺,', ',⍵}⌿'cow' 'sheep' 'cat' 'dog'
┌────────────────────┐
┌────────────────────┐
Line 33: Line 33:
└────────────────────┘
└────────────────────┘
</source>
</source>
So back to our mean example. <source lang=apl inline>(+⌿⍵)</source> gives the sum of the list, which is then divided by <source lang=apl inline>≢⍵</source>, the number elements in it.
So back to our mean example. <syntaxhighlight lang=apl inline>(+⌿⍵)</source> gives the sum of the list, which is then divided by <syntaxhighlight lang=apl inline>≢⍵</source>, the number elements in it.
<source lang=apl>
<syntaxhighlight lang=apl>
       {(+⌿⍵)÷≢⍵} 3 4.5 7 21
       {(+⌿⍵)÷≢⍵} 3 4.5 7 21
8.875
8.875
Line 44: Line 44:


In APL’s tacit definition, no braces are needed to mark the definition of a function: primitive functions just combine in a way that enables us to omit any reference to the function arguments — hence ''tacit''. Here is the same calculation written tacitly:
In APL’s tacit definition, no braces are needed to mark the definition of a function: primitive functions just combine in a way that enables us to omit any reference to the function arguments — hence ''tacit''. Here is the same calculation written tacitly:
<source lang=apl>
<syntaxhighlight lang=apl>
       (+⌿÷≢) 3 4.5 7 21
       (+⌿÷≢) 3 4.5 7 21
8.875
8.875
Line 51: Line 51:
This is a so called 3-train, also known as a ''fork''. It is evaluated like this:
This is a so called 3-train, also known as a ''fork''. It is evaluated like this:
{|
{|
|<source lang=apl>(+⌿ ÷ ≢) 3 4.5 7 21</source>|| {{←→}} ||<source lang=apl>(+⌿ 3 4.5 7 21) ÷ (≢ 3 4.5 7 21)</source>
|<syntaxhighlight lang=apl>(+⌿ ÷ ≢) 3 4.5 7 21</source>|| {{←→}} ||<syntaxhighlight lang=apl>(+⌿ 3 4.5 7 21) ÷ (≢ 3 4.5 7 21)</source>
|}
|}


Note that <source lang=apl inline>+⌿</source> is evaluated as a single derived function.
Note that <syntaxhighlight lang=apl inline>+⌿</source> is evaluated as a single derived function.
The general scheme for monadic 3-trains is the following:
The general scheme for monadic 3-trains is the following:
{|
{|
|<source lang=apl>(f g h) ⍵</source>|| {{←→}} ||<source lang=apl>(f ⍵) g (h ⍵)</source>
|<syntaxhighlight lang=apl>(f g h) ⍵</source>|| {{←→}} ||<syntaxhighlight lang=apl>(f ⍵) g (h ⍵)</source>
|}
|}


Line 65: Line 65:
APL represents text as character lists (vectors), making many text operations trivial.
APL represents text as character lists (vectors), making many text operations trivial.
=== Split text by delimiter ===
=== Split text by delimiter ===
<source lang=apl inline>≠</source> gives 1 for true and 0 for false. It [[scalar function|pairs up]] a single element argument with all the elements of the other arguments:
<syntaxhighlight lang=apl inline>≠</source> gives 1 for true and 0 for false. It [[scalar function|pairs up]] a single element argument with all the elements of the other arguments:
<source lang=apl>
<syntaxhighlight lang=apl>
       ','≠'comma,delimited,text'
       ','≠'comma,delimited,text'
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
</source>
</source>
<source lang=apl inline>⊢</source> returns its right argument:
<syntaxhighlight lang=apl inline>⊢</source> returns its right argument:
<source lang=apl>
<syntaxhighlight lang=apl>
           ','⊢'comma,delimited,text'
           ','⊢'comma,delimited,text'
comma,delimited,text
comma,delimited,text
</source>
</source>
<source lang=apl inline>⊆</source> returns a list of runs as indicated by runs of 1s, leaving out elements indicated by 0s:
<syntaxhighlight lang=apl inline>⊆</source> returns a list of runs as indicated by runs of 1s, leaving out elements indicated by 0s:
<source lang=apl>
<syntaxhighlight lang=apl>
       1 1 0 1 1 1⊆'Hello!'
       1 1 0 1 1 1⊆'Hello!'
┌──┬───┐
┌──┬───┐
Line 85: Line 85:


[https://tryapl.org/?a=%27%2C%27%28%u2260%u2286%u22A2%29%27comma%2Cdelimited%2Ctext%27&run Try it now!]
[https://tryapl.org/?a=%27%2C%27%28%u2260%u2286%u22A2%29%27comma%2Cdelimited%2Ctext%27&run Try it now!]
<source lang=apl>
<syntaxhighlight lang=apl>
       ','(≠⊆⊢)'comma,delimited,text'
       ','(≠⊆⊢)'comma,delimited,text'
┌─────┬─────────┬────┐
┌─────┬─────────┬────┐
Line 92: Line 92:
</source>
</source>
{{Works in|[[Dyalog APL]]}}
{{Works in|[[Dyalog APL]]}}
Notice that you can read the [[tacit]] function <source lang=apl inline>≠⊆⊢</source> like an English sentence: ''The inequality partitions the right argument''.
Notice that you can read the [[tacit]] function <syntaxhighlight lang=apl inline>≠⊆⊢</source> like an English sentence: ''The inequality partitions the right argument''.


Many dialects do not support the above [[tacit]] syntax, and use the [[glyph]] <source lang=apl inline>⊂</source> for partition [[primitive function]]. In such dialects, the following formulation can be used:
Many dialects do not support the above [[tacit]] syntax, and use the [[glyph]] <syntaxhighlight lang=apl inline>⊂</source> for partition [[primitive function]]. In such dialects, the following formulation can be used:
<source lang=apl>
<syntaxhighlight lang=apl>
       (','≠s)⊂s←'comma,delimited,text'
       (','≠s)⊂s←'comma,delimited,text'
</source>
</source>
{{Works in|[[APL2]], [[APLX]], [[GNU APL]]}}
{{Works in|[[APL2]], [[APLX]], [[GNU APL]]}}
This assigns the text to the variable <source lang=apl inline>s</source>, then separately computes the partitioning vector and applies it.
This assigns the text to the variable <syntaxhighlight lang=apl inline>s</source>, then separately computes the partitioning vector and applies it.


=== Indices of multiple elements ===
=== Indices of multiple elements ===
<source lang=apl inline>∊</source> gives us a mask for elements (characters) in the left argument that are members of the right argument:
<syntaxhighlight lang=apl inline>∊</source> gives us a mask for elements (characters) in the left argument that are members of the right argument:
<source lang=apl>
<syntaxhighlight lang=apl>
       'mississippi'∊'sp'
       'mississippi'∊'sp'
0 0 1 1 0 1 1 0 1 1 0
0 0 1 1 0 1 1 0 1 1 0
</source>
</source>
<source lang=apl inline>⍸</source> gives us the indices where true (1):
<syntaxhighlight lang=apl inline>⍸</source> gives us the indices where true (1):
<source lang=apl>
<syntaxhighlight lang=apl>
       ⍸'mississippi'∊'sp'
       ⍸'mississippi'∊'sp'
3 4 6 7 9 10
3 4 6 7 9 10
</source>
</source>
We can combine this into an anonymous infix (dyadic) function:
We can combine this into an anonymous infix (dyadic) function:
<source lang=apl>
<syntaxhighlight lang=apl>
       'mississippi' (⍸∊) 'sp'
       'mississippi' (⍸∊) 'sp'
3 4 6 7 9 10
3 4 6 7 9 10
Line 121: Line 121:
=== Frequency of characters in a string ===
=== Frequency of characters in a string ===
The [[Outer Product]] allows for an intuitive way to compute the occurrence of characters at a given location in a string:
The [[Outer Product]] allows for an intuitive way to compute the occurrence of characters at a given location in a string:
<source lang=apl>
<syntaxhighlight lang=apl>
       'abcd' ∘.= 'cabbage'
       'abcd' ∘.= 'cabbage'
  0 1 0 0 1 0 0
  0 1 0 0 1 0 0
Line 128: Line 128:
  0 0 0 0 0 0 0
  0 0 0 0 0 0 0
</source>
</source>
Then it is simply a matter of performing a sum-reduce <source lang=apl inline>+/</source> to calculate the total frequency of each character:<ref name="Marshall LambaConf 2019">[[Marshall Lochbaum]] used this example as part of his talk on [[Outer Product]] at LambdaConf 2019.</ref>
Then it is simply a matter of performing a sum-reduce <syntaxhighlight lang=apl inline>+/</source> to calculate the total frequency of each character:<ref name="Marshall LambaConf 2019">[[Marshall Lochbaum]] used this example as part of his talk on [[Outer Product]] at LambdaConf 2019.</ref>
<source lang=apl>
<syntaxhighlight lang=apl>
       +/ 'abcd' ∘.= 'cabbage'
       +/ 'abcd' ∘.= 'cabbage'
  2 2 1 0
  2 2 1 0
Line 138: Line 138:
What was the one-liner for the nesting level of parentheses? It would take a bit of work to figure out, because at the time of the meeting Perlis described, no APL implementation existed. Two possibilities are explained here.
What was the one-liner for the nesting level of parentheses? It would take a bit of work to figure out, because at the time of the meeting Perlis described, no APL implementation existed. Two possibilities are explained here.
==== Method A ====
==== Method A ====
For this more complex computation, we can expand on the previous example's use of <source lang=apl inline>∘.=</source>. First we compare all characters to the opening and closing characters;
For this more complex computation, we can expand on the previous example's use of <syntaxhighlight lang=apl inline>∘.=</source>. First we compare all characters to the opening and closing characters;
<source lang=apl>
<syntaxhighlight lang=apl>
       '()'∘.='plus(square(a),plus(square(b),times(2,plus(a,b)))'
       '()'∘.='plus(square(a),plus(square(b),times(2,plus(a,b)))'
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
Line 145: Line 145:
</source>
</source>
An opening increases the current level, while a closing decreases, so we convert this to ''changes'' (or ''deltas'') by subtracting the bottom row from the top row:
An opening increases the current level, while a closing decreases, so we convert this to ''changes'' (or ''deltas'') by subtracting the bottom row from the top row:
<source lang=apl>
<syntaxhighlight lang=apl>
       -⌿'()'∘.='plus(square(a),plus(square(b),times(2,plus(a,b)))'
       -⌿'()'∘.='plus(square(a),plus(square(b),times(2,plus(a,b)))'
0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ¯1 ¯1 ¯1
0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ¯1 ¯1 ¯1
</source>
</source>
The running sum is what we're looking for:
The running sum is what we're looking for:
<source lang=apl>
<syntaxhighlight lang=apl>
       +\-⌿'()'∘.='plus(square(a),plus(square(b),times(2,plus(a,b)))'
       +\-⌿'()'∘.='plus(square(a),plus(square(b),times(2,plus(a,b)))'
0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 3 2 1
0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 3 2 1
Line 156: Line 156:
{{Works in|all APLs}}
{{Works in|all APLs}}
==== Method B ====
==== Method B ====
Alternatively, we can utilise that if the [[Index Of]] function <source lang=apl inline>⍳</source> doesn't find what it is looking for, it returns the next index after the last element in the the lookup array:
Alternatively, we can utilise that if the [[Index Of]] function <syntaxhighlight lang=apl inline>⍳</source> doesn't find what it is looking for, it returns the next index after the last element in the the lookup array:
<source lang=apl>
<syntaxhighlight lang=apl>
       'ABBA'⍳'ABC'
       'ABBA'⍳'ABC'
1 2 5
1 2 5
Line 164: Line 164:
</source>
</source>
Whenever we have a 1 the parenthesis level increases, and when we have a 2 it decreases. If we have a 3, it remains as-is. We can do this mapping by indexing into these values:
Whenever we have a 1 the parenthesis level increases, and when we have a 2 it decreases. If we have a 3, it remains as-is. We can do this mapping by indexing into these values:
<source lang=apl>
<syntaxhighlight lang=apl>
       1 ¯1 0['()'⍳'plus(square(a),plus(square(b),times(2,plus(a,b)))']
       1 ¯1 0['()'⍳'plus(square(a),plus(square(b),times(2,plus(a,b)))']
0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ¯1 ¯1 ¯1
0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ¯1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ¯1 ¯1 ¯1
</source>
</source>
The running sum is what we're looking for:
The running sum is what we're looking for:
<source lang=apl>
<syntaxhighlight lang=apl>
       +\1 ¯1 0['()'⍳'plus(square(a),plus(square(b),times(2,plus(a,b)))']
       +\1 ¯1 0['()'⍳'plus(square(a),plus(square(b),times(2,plus(a,b)))']
0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 3 2 1
0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 3 2 1
Line 180: Line 180:
<p>
<p>
Represent both the grid of letters and the grille as character matrices.
Represent both the grid of letters and the grille as character matrices.
<source lang=apl>
<syntaxhighlight lang=apl>
       ⎕←(grid grille)←5 5∘⍴¨'VRYIALCLQIFKNEVPLARKMPLFF' '⌺⌺⌺ ⌺ ⌺⌺⌺ ⌺ ⌺ ⌺⌺⌺ ⌺⌺⌺  ⌺⌺'
       ⎕←(grid grille)←5 5∘⍴¨'VRYIALCLQIFKNEVPLARKMPLFF' '⌺⌺⌺ ⌺ ⌺⌺⌺ ⌺ ⌺ ⌺⌺⌺ ⌺⌺⌺  ⌺⌺'
┌─────┬─────┐
┌─────┬─────┐
Line 192: Line 192:
</p>
</p>
Retrieve elements of the grid where there are spaces in the grille.
Retrieve elements of the grid where there are spaces in the grille.
<source lang=apl>
<syntaxhighlight lang=apl>
       grid[⍸grille=' ']
       grid[⍸grille=' ']
ILIKEAPL
ILIKEAPL
</source>
</source>
An alternative method using [[ravel]].
An alternative method using [[ravel]].
<source lang=apl>
<syntaxhighlight lang=apl>
       (' '=,grille)/,grid
       (' '=,grille)/,grid
ILIKEAPL
ILIKEAPL

Navigation menu