Ambivalent function: Difference between revisions

Jump to navigation Jump to search
2,627 bytes added ,  21:15, 16 November 2019
no edit summary
Miraheze>Adám Brudzewsky
No edit summary
Miraheze>Adám Brudzewsky
No edit summary
Line 2: Line 2:


Being ambivalent, or not, is an inherent property of a function. This contrasts with the terms "monadic" and "dyadic" which may refer either to the function's inherent properties as described above or to the context in which it is used. When an ambivalent function is invoked it has either one argument or two: we would say for example it is an ambivalent function ''called monadically''.
Being ambivalent, or not, is an inherent property of a function. This contrasts with the terms "monadic" and "dyadic" which may refer either to the function's inherent properties as described above or to the context in which it is used. When an ambivalent function is invoked it has either one argument or two: we would say for example it is an ambivalent function ''called monadically''.
=== Tradfns ===
In some APLs, for example [[APL*PLUS]], [[tradfn]]s that declare a left argument in the [[function header]] are always ambivalent, and the code needs to check whether a left argument was supplied by the left argument name's [[name class]]; <source lang=apl inline>0 ≠ ⎕NC 'leftArg'</source>. Other APLs, for example [[Dyalog APL]], will not allow calling such a function monadically, unless the header has curly braces around the left argument name to indicate that it is optional; <source lang=apl inline> result ← {leftArg} FnName rightArg</source>. Then too, they need to query the name class, or, unique for Dyalog APL, use a specialised ''Called Monadically'' [[I-beam]], <source lang=apl inline>900⌶⍬</source>.<ref>[[Dyalog APL]] Language Reference Guide > The I-Beam Operator > [http://help.dyalog.com/latest/#Language/Primitive%20Operators/Called%20Monadically.htm Called Monadically]</ref>
=== Dfns ===
[[Dfn]]s are always ambivalent, even if they reference <source lang=apl inline>⍺</source>. (This is in contrast with [[dop]]s which have a fixed [[operator valence]] determined by the presence of an unquoted <source lang=apl inline>⍵⍵</source> in their code.) Like tradfns, the dfn can check the name class (<source lang=apl inline>0 ≠ ⎕NC '⍺'</source>).
However, most APLs that support dfns also allow a statement of the structure <source lang=apl inline>⍺ ← defaultValue</source> which skipped if the function was called dyadically.<ref>[[Dyalog APL]] Programming Reference Guide > Defined Functions & Operators > Direct Functions & Operators > [http://help.dyalog.com/latest/#Language/Defined%20Functions%20and%20Operators/DynamicFunctions/Default%20Left%20Argument.htm Default Left Argument]</ref> This syntax also allows assigning a function, or even an operator, to <source lang=apl inline>⍺</source>, thus streamlining many ambivalent definitions. For example, we can create a Nth root function which defaults to being the square root when used monadically:
[https://tio.run/##SyzI0U2pTMzJT///Pyg/v@RR24RqLgUgeNS7C8g2grK3KmgpHN4OFOOqhahTMDQw4DJWADONzAE Try it online!]
<source lang=apl>
Root←{
    ⍺←2
    ⍵ * ÷⍺
}
</source>
We can also define the [[Over]] operator with <source lang=apl inline>⍺</source> defaulting to be an operator that skips its operand:
[https://tio.run/##SyzI0U2pTMzJT///378stehR24RqLgUgeNS7C8R@1LtV4VF3C5jbu6sWLKUBFASL9@7ShEogiW3V5Kr9/19XAWSagsbh6Y96V2gqGHOZKqAJmQAA Try it online!]
<source lang=apl>
Over←{
    ⍺←{⍵ ⋄ ⍺⍺}
    (⍵⍵ ⍺) ⍺⍺ (⍵⍵ ⍵)
}
</source>
== References ==
<references/>


{{APL programming language}}
{{APL programming language}}

Navigation menu