Transpose: Difference between revisions

Jump to navigation Jump to search
117 bytes added ,  10:31, 11 September 2022
m
Text replacement - "</source>" to "</syntaxhighlight>"
m (Text replacement - "</source>" to "</syntaxhighlight>")
Line 20: Line 20:
       ⍉1 2 3  ⍝ Unaffected
       ⍉1 2 3  ⍝ Unaffected
1 2 3
1 2 3
</source>
</syntaxhighlight>


=== Dyadic usage ===
=== Dyadic usage ===
{| class=wikitable style="width:50%;float:right"
{| class=wikitable style="width:50%;float:right"
|{{quote | "Dyadic transpose, <source lang=apl inline>x⍉y</source>, is probably one of the last primitives to be mastered for an APLer, but is actually straightforward to describe."<ref>[[Roger Hui]]. [https://forums.dyalog.com/viewtopic.php?f=30&t=1648 ''dyadic transpose, a personal history'']. Dyalog Forums. 22 May 2020.</ref>}}
|{{quote | "Dyadic transpose, <source lang=apl inline>x⍉y</syntaxhighlight>, is probably one of the last primitives to be mastered for an APLer, but is actually straightforward to describe."<ref>[[Roger Hui]]. [https://forums.dyalog.com/viewtopic.php?f=30&t=1648 ''dyadic transpose, a personal history'']. Dyalog Forums. 22 May 2020.</ref>}}
|}
|}
For [[dyadic]] usage, the left argument X must be a [[vector]] whose length equals the [[rank]] of the right argument Y, and the elements must form a range so that <source lang=apl inline>∧/X∊⍳(1-⎕IO)+⌈/X</source> is satisfied.
For [[dyadic]] usage, the left argument X must be a [[vector]] whose length equals the [[rank]] of the right argument Y, and the elements must form a range so that <source lang=apl inline>∧/X∊⍳(1-⎕IO)+⌈/X</syntaxhighlight> is satisfied.


If all values in X are unique (X forms a [[permutation]] over the axes of Y), the axes are reordered by X so that N-th element of X specifies the new position for the N-th axis of Y. This means that, given a multi-dimensional [[index]] V of an element in the resulting array, <source lang=apl inline>V⌷X⍉Y</source> corresponds to <source lang=apl inline>V[X]⍉Y</source>.
If all values in X are unique (X forms a [[permutation]] over the axes of Y), the axes are reordered by X so that N-th element of X specifies the new position for the N-th axis of Y. This means that, given a multi-dimensional [[index]] V of an element in the resulting array, <source lang=apl inline>V⌷X⍉Y</syntaxhighlight> corresponds to <source lang=apl inline>V[X]⍉Y</syntaxhighlight>.


<source lang=apl>
<source lang=apl>
Line 39: Line 39:
       1 2 3[X]⌷Y  ⍝ or Y[3;1;2]
       1 2 3[X]⌷Y  ⍝ or Y[3;1;2]
P
P
</source>
</syntaxhighlight>


When X contains duplicates, the result has rank <source lang=apl inline>(1-⎕IO)+⌈/X</source>. For the axes of Y that map to the same resulting axis, only the elements where the indices are equal over those axes are collected. This has the effect of extracting diagonal elements. If the axes are of unequal length, the resulting axis has the length of the shortest of them. This operation can be modeled as computing the resulting shape <source lang=apl inline>(⍴Y)⌊.+(⌊/⍬)×X∘.≠(1-⎕IO)+⍳⌈/X</source>, then [[Index Generator|creating the array of its multi-dimensional indices]] <source lang=apl inline>⍳</source>, then modify each index and fetch the corresponding elements of Y <source lang=apl inline>{⍵[X]⌷Y}¨</source>.
When X contains duplicates, the result has rank <source lang=apl inline>(1-⎕IO)+⌈/X</syntaxhighlight>. For the axes of Y that map to the same resulting axis, only the elements where the indices are equal over those axes are collected. This has the effect of extracting diagonal elements. If the axes are of unequal length, the resulting axis has the length of the shortest of them. This operation can be modeled as computing the resulting shape <source lang=apl inline>(⍴Y)⌊.+(⌊/⍬)×X∘.≠(1-⎕IO)+⍳⌈/X</syntaxhighlight>, then [[Index Generator|creating the array of its multi-dimensional indices]] <source lang=apl inline>⍳</syntaxhighlight>, then modify each index and fetch the corresponding elements of Y <source lang=apl inline>{⍵[X]⌷Y}¨</syntaxhighlight>.


<source lang=apl>
<source lang=apl>
Line 53: Line 53:
       (X⍉Y)≡{⍵[X]⌷Y}¨⍳(⍴Y)⌊.+(⌊/⍬)×X∘.≠(1-⎕IO)+⍳⌈/X
       (X⍉Y)≡{⍵[X]⌷Y}¨⍳(⍴Y)⌊.+(⌊/⍬)×X∘.≠(1-⎕IO)+⍳⌈/X
1
1
</source>{{Works in|[[Dyalog APL]]}}
</syntaxhighlight>{{Works in|[[Dyalog APL]]}}
== Issues ==
== Issues ==
A common mistake in employing dyadic transpose is the "intuitive" interpretation of the left argument as if gives the order in which you want to select dimensions of the right argument for the result. In fact, it gives the new position of each of the dimensions. It is possible to convert between these two representations by "inverting" the permutation with monadic [[Grade|Grade Up]] (<source lang=apl inline>⍋</source>).
A common mistake in employing dyadic transpose is the "intuitive" interpretation of the left argument as if gives the order in which you want to select dimensions of the right argument for the result. In fact, it gives the new position of each of the dimensions. It is possible to convert between these two representations by "inverting" the permutation with monadic [[Grade|Grade Up]] (<source lang=apl inline>⍋</syntaxhighlight>).


The reason for the design of <source lang=apl inline>⍉</source> being as it is, is that it allows you to select diagonals by giving one or more dimensions equal mapping, whereas simply selecting dimensions from the right would not allow that. It is therefore the more complete of the two options.<ref>[[Morten Kromberg]]. Message {{M|57439754}}ff. [[APL Orchard]]. 25 Mar 2021.</ref>
The reason for the design of <source lang=apl inline>⍉</syntaxhighlight> being as it is, is that it allows you to select diagonals by giving one or more dimensions equal mapping, whereas simply selecting dimensions from the right would not allow that. It is therefore the more complete of the two options.<ref>[[Morten Kromberg]]. Message {{M|57439754}}ff. [[APL Orchard]]. 25 Mar 2021.</ref>


== External links ==
== External links ==

Navigation menu