Tacit programming: Difference between revisions

Jump to navigation Jump to search
1,398 bytes added ,  23:04, 18 December 2021
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Tacit functions apply to implicit arguments. This is in contrast to the explicit use of arguments in [[dfns]] (<source inline lang=apl>⍺ ⍵</source>) and [[tradfns]] (which have named arguments). Some APL dialects allow to combine functions into '''trains''' following a small set of rules. This allows creating complex derived functions without specifying any arguments explicitly.
'''Tacit programming''', also called '''[[wikipedia:Tacit_programming|point-free style]]''', refers to usage of tacit [[function]]s that are defined in terms of implicit [[argument]]s. This is in contrast to the explicit use of arguments in [[dfn]]s (<source inline lang=apl>⍺ ⍵</source>) and [[tradfn]]s (which have named arguments). Some APL dialects allow to combine functions into [[#trains|trains]] following a small set of rules. This allows creating complex [[derived function]]s without specifying any arguments explicitly.


Known dialects which implement trains are [[Dyalog APL]], [[dzaima/APL]], [[ngn/apl]] and [[NARS2000]].
Dialects which implement trains include [[Dyalog APL]], [[dzaima/APL]], [[ngn/apl]] and [[NARS2000]].


== Primitives ==
== Primitives ==
Line 36: Line 36:
A train is a series of functions in isolation. An isolated function is either surrounded by parentheses or named. Below, <source lang=apl inline>⍺</source> and <source lang=apl inline>⍵</source> refer to the arguments of the train. <source lang=apl inline>f</source>, <source lang=apl inline>g</source>, and <source lang=apl inline>h</source> are functions (which themselves can be tacit or not), and <source lang=apl inline>A</source> is an array. The arguments are processed by the following rules:
A train is a series of functions in isolation. An isolated function is either surrounded by parentheses or named. Below, <source lang=apl inline>⍺</source> and <source lang=apl inline>⍵</source> refer to the arguments of the train. <source lang=apl inline>f</source>, <source lang=apl inline>g</source>, and <source lang=apl inline>h</source> are functions (which themselves can be tacit or not), and <source lang=apl inline>A</source> is an array. The arguments are processed by the following rules:


=== Forks ===
=== 3-trains ===
A 3-train is a ''fork'':
A 3-train is a ''fork'', so denoted because its structure resembles a three-tines fork, or a three-pronged pitchfork. The two outer functions are applied first, and their results are used as arguments to the middle function:
{|
{|
|<source lang=apl>  (f g h) ⍵</source>|| {{←→}} ||<source lang=apl>(  f ⍵) g (  h ⍵)</source>
|<source lang=apl>  (f g h) ⍵</source>|| {{←→}} ||<source lang=apl>(  f ⍵) g (  h ⍵)</source>
Line 45: Line 45:
The ''left tine'' of a fork can be an array:
The ''left tine'' of a fork can be an array:
{|
{|
|<source lang=apl>  (A g h)</source>|| {{←→}} ||<source lang=apl>A g (  h ⍵)</source>
|<source lang=apl>  (A g h) </source>|| {{←→}} ||<source lang=apl>A g (  h ⍵)</source>
|-
|-
|<source lang=apl>⍺ (A g h) ⍵</source>|| {{←→}} ||<source lang=apl>A g (⍺ h ⍵)</source>
|<source lang=apl>⍺ (A g h) ⍵</source>|| {{←→}} ||<source lang=apl>A g (⍺ h ⍵)</source>
|}
|}


=== Atops ===
=== 2-trains ===
A 2-train is an ''atop'':
Most dialects define a 2-train is an ''atop'', equivalent to the function derived using the [[Atop (operator)|Atop]] operator. The left function is applied [[monadic function|monadically]] on the result of the right function:
{|
{|
|<source lang=apl>  (g h) ⍵</source>|| {{←→}} ||<source lang=apl>g (  h ⍵)</source>
|<source lang=apl>  (g h) ⍵</source>|| {{←→}} ||<source lang=apl>g (  h ⍵)</source>
Line 59: Line 59:


Only [[dzaima/APL]] allows <source lang=apl inline>(A h)</source>, which it treats as <source lang=apl inline>A∘h</source>.<ref>dzaima/APL: [https://github.com/dzaima/APL/blob/ceea05e25687988ed0980a4abf4b9249b736543f/docs/differences.txt#L19 Differences from Dyalog APL]. Retrieved 09 Jan 2020.</ref> See [[Bind]].
Only [[dzaima/APL]] allows <source lang=apl inline>(A h)</source>, which it treats as <source lang=apl inline>A∘h</source>.<ref>dzaima/APL: [https://github.com/dzaima/APL/blob/ceea05e25687988ed0980a4abf4b9249b736543f/docs/differences.txt#L19 Differences from Dyalog APL]. Retrieved 09 Jan 2020.</ref> See [[Bind]].
[[J]] instead defines the 2-train as a [[hook]], equivalent to the function derived using the [[Withe]] operator. The left function is always applied [[dyadic function|dyadically]], taking as right argument, the result of applying the right function on the right argument. If there is no left argument, the sole argument is used also as left argument:
{|
|<source lang=apl>  (g h) ⍵</source>|| {{←→}} ||<source lang=apl>⍵ g (h ⍵)</source>
|-
|<source lang=apl>⍺ (g h) ⍵</source>|| {{←→}} ||<source lang=apl>⍺ g (h ⍵)</source>
|}


== Debugging ==
== Debugging ==
Line 198: Line 205:
666                                                  ⍝ ⍎ executes original Accursed train
666                                                  ⍝ ⍎ executes original Accursed train
</source>
</source>
== See also ==
* [[Function composition]]


== External links ==
== External links ==
=== Tutorials ===
=== Tutorials ===
* Dyalog: [https://help.dyalog.com/16.0/Content/RelNotes14.0/Function%20Trains.htm version 14.0 release notes]
* [[Learning APL]]: [https://xpqz.github.io/learnapl/tacit.html Trainspotting]
* [[Documentation_suites#Dyalog_APL|Dyalog documentation]]: [https://help.dyalog.com/16.0/Content/RelNotes14.0/Function%20Trains.htm version 14.0 release notes]
* [[Dfns workspace]]: [https://dfns.dyalog.com/n_tacit.htm Translation of <nowiki>[dfns]</nowiki> into tacit form]
* [[APL Cultivation]]: [https://chat.stackexchange.com/rooms/52405/conversation/lesson-23-transcribing-to-and-reading-trains Transcribing to and reading trains]
* [[APL Cultivation]]: [https://chat.stackexchange.com/rooms/52405/conversation/lesson-23-transcribing-to-and-reading-trains Transcribing to and reading trains]
* [[APLtrainer]]: [https://www.youtube.com/watch?v=kt4lMZbn-so How to read trains in Dyalog APL code] (video)
* [[APLtrainer]]: [https://www.youtube.com/watch?v=kt4lMZbn-so How to read trains in Dyalog APL code] (video)

Navigation menu