# Difference between revisions of "Simple array"

Line 1: | Line 1: | ||

− | In the [[nested array model]], a '''simple array''' is an array whose [[element]]s are all [[simple scalar]]s. A non-empty array is simple if and only if it has a [[depth]] of 0 (which makes it a | + | In the [[nested array model]], a '''simple array''' is an array whose [[element]]s are all [[simple scalar]]s. A non-empty array is simple if and only if it has a [[depth]] of 0 (which makes it a scalar) or 1. [[Empty]] arrays are considered simple in most contexts, although they may have depth greater than 1 in languages that use the [[prototype]] to determine depth. |

The simple arrays are a superset of the arrays allowed in [[flat array theory]] without [[box]]es (or those which have [[depth]] 0 in flat array theory): they include all arrays of a single type, as well as arrays which mix types like numbers and characters. Arrays which would not be representable in flat array theory—those which contain a mixture of simple scalar types, or contain both simple scalars and other arrays—are called [[mixed]]. | The simple arrays are a superset of the arrays allowed in [[flat array theory]] without [[box]]es (or those which have [[depth]] 0 in flat array theory): they include all arrays of a single type, as well as arrays which mix types like numbers and characters. Arrays which would not be representable in flat array theory—those which contain a mixture of simple scalar types, or contain both simple scalars and other arrays—are called [[mixed]]. |

## Latest revision as of 15:27, 3 August 2020

In the nested array model, a **simple array** is an array whose elements are all simple scalars. A non-empty array is simple if and only if it has a depth of 0 (which makes it a scalar) or 1. Empty arrays are considered simple in most contexts, although they may have depth greater than 1 in languages that use the prototype to determine depth.

The simple arrays are a superset of the arrays allowed in flat array theory without boxes (or those which have depth 0 in flat array theory): they include all arrays of a single type, as well as arrays which mix types like numbers and characters. Arrays which would not be representable in flat array theory—those which contain a mixture of simple scalar types, or contain both simple scalars and other arrays—are called mixed.

The term "simple" is not typically used in flat APLs. On the APL Wiki, it may be used to mean a non-boxed array.

APL features [edit]
| |
---|---|

Built-ins | Primitive function ∙ Primitive operator ∙ Quad name |

Array model | Shape ∙ Rank ∙ Depth ∙ Bound ∙ Index (Indexing) ∙ Axis ∙ Ravel ∙ Ravel order ∙ Element ∙ Scalar ∙ Vector ∙ Matrix ∙ Simple scalar ∙ Simple array ∙ Nested array ∙ Cell ∙ Major cell ∙ Subarray ∙ Empty array ∙ Prototype |

Data types | Number (Boolean, Complex number) ∙ Character (String) ∙ Box ∙ Namespace |

Concepts and paradigms | Leading axis theory ∙ Scalar extension ∙ Conformability ∙ Scalar function ∙ Pervasion ∙ Glyph ∙ Identity element ∙ Complex floor ∙ Total array ordering |

Errors | LIMIT ERROR ∙ RANK ERROR ∙ SYNTAX ERROR ∙ DOMAIN ERROR ∙ LENGTH ERROR ∙ INDEX ERROR ∙ VALUE ERROR |