# Partition representations

Partition, Partitioned Enclose, and the Cut operator all allow a programmer to split a vector into differently sized pieces. The left argument to these operations defines the structure of the partition. This page discusses possible ways partitions can be represented.

This page uses index origin 0.

## Definitions

In this page, a **partition** of a vector is defined to be a nested or boxed vector containing vectors, such that the Raze (or equivalently `{⊃⍪/⍵}`

in nested APLs) of the partition intolerantly matches the original vector. A partition contains all the original elements of the vector, in the same order, but at one greater depth.

The vectors contained in a partition are called **divisions**, and the boundaries between them are called **dividers**. Although the English word "partition" can be used for either of these, the ambiguity of using one word for three different objects could be confusing. Only boundaries between divisions are called dividers: we do not name the two outermost edges, which must exist in any partition.

We consider two partitions of a vector to be identical if they match, ignoring prototypes. Since partitions of the same vector contain the same data, and in the same order, they match when they have identical structure. The partition representations discussed below are ways of encoding structure; a desirable quality of a partition representation is that two partitions match exactly when their representations match.

## Representation using division lengths

Perhaps the most obvious way to represent a partition of a vector `X`

is using a vector of lengths `l`

such that `(+/l) = ≢X`

. `l`

gives the length of each division in order, that is, for a partition `P`

of `X`

, `l ≡ ≢¨P`

. Because the length vector is determined by the partition in this way, two different length vectors cannot lead to the same partition.

We can obtain a partition from the division lengths by using Take twice to obtain each division. In the process, we must compute the division endpoints `+\l`

using a Plus Scan.

```
l ← 2 0 3 3
X ← 'abcdefgh'
(-l) ↑¨ (+\l) ↑¨ ⊂X
┌──┬┬───┬───┐
│ab││cde│fgh│
└──┴┴───┴───┘
```

The division endpoints are another way to represent partitions. The endpoints `+\l`

computed above form a non-decreasing vector of non-negative integers whose last element is equal to the length of the partitioned vector. It would also be possible to use the partition starting points `+\¯1↓0,l`

; here we use only endpoints for consistency.

Vectors of division endpoints correspond exactly to vectors of division lengths, because the windowed difference `¯2-/0,e`

is an exact inverse of Plus Scan which obtains division lengths `l`

from endpoints `e`

.

## Representation using divider locations

Existing APLs rarely define partitioning functions using properties of the resulting divisions. Instead, most partition functions use a vector of the same length as the partitioned vector to control how it is partitioned. For example, Partitioned Enclose starts a new partition whenever a 1 is encountered in the Boolean left argument:

```
1 0 1 1 0 0 1 ⊂ 'abcdefg'
┌──┬─┬───┬─┐
│ab│c│def│g│
└──┴─┴───┴─┘
```

This style of partition function is slightly harder to understand and implement, but does have advantages:

- The left argument can sometimes be obtained directly from the right argument. For example, a partition might be started whenever a space is encountered.
- Left arguments can be merged using arithmetic. For two Partitioned Enclose arguments
`a`

and`b`

, the Maximum`a⌈b`

gives a common refinement of the two corresponding partitions.

A shortcoming of existing Partition and Partitioned Enclose is that they do not allow empty divisions to be produced. While the length representation makes empty divisions easy to represent, and the obvious implementation produces them with no trouble, it is less obvious how empty divisions should be represented in APL-style partitions. However, each can be modified to obtain a representation which is complete and one-to-one. In the case of Partitioned Enclose the modification is mostly backwards compatible: it extends the domain from Boolean vectors to vectors of non-negative integers, and the only incompatibility between our definition and the existing APL definition will be an offset of one for the first element.

### Target indices

First, we give a representation related to the one used in Partition. Recall that Partition starts a new division whenever values in its left argument increase (similar to Key, except that it cares about whether values are adjacent):

```
1 1 3 3 3 3 6 ⊆ 'abcdefg'
┌──┬────┬─┐
│ab│cdef│g│
└──┴────┴─┘
```

A more rigorous approach is to allow the left argument to specify the index of the division to which the corresponding element belongs. In order for this to produce a partition, the left argument must be a vector of non-decreasing non-negative integers (as with the division endpoint representation). Then for a left argument `l`

the number of partitions is `⊃⌽l`

.

```
1 1 3 3 3 3 6 part 'abcdefg'
┌┬──┬┬────┬┬┬─┐
││ab││cdef│││g│
└┴──┴┴────┴┴┴─┘
```

Note that the non-empty divisions above are identical to those produced by Partition. The difference is that empty divisions are inserted when the index increases (including from an implicit initial index of `¯1`

) based on how many indices were skipped (since the divisions with those indices can't contain any elements).

Target indices can be converted to division endpoints using Interval Index, and then to division lengths with a pair-wise difference:

```
{1+⍵⍸⍳1+⊃⌽⍵}1 1 3 3 3 3 6
0 2 2 6 6 6 7
¯2-/0,{1+⍵⍸⍳1+⊃⌽⍵}1 1 3 3 3 3 6
0 2 0 4 0 0 1
```

This conversion can be used to show that like the other two representations, target indices represent partitions bijectively. However, there is a concern regarding the final element, which is used to find the length of the division length vector above, that is, the number of divisions. If the target indices correspond exactly to the elements of the partitioned vector, then the last target index is the index of the last *non-empty* division. However, it is valid in a partition to include empty divisions at the end. In order to represent such divisions, we must allow an additional index after the last element of the partitioned vector.

### Divider counts

The target index of an element is the same as the number of dividers which fall before it. Motivated by this fact, we might use the pair-wise differences of the target indices as another partition representation. Taking differences converts the total number of dividers before each element to the number of dividers immediately preceding it. For example, the vector below encodes the same partition as that shown in the previous section.

```
¯2-/0,1 1 3 3 3 3 6
1 0 2 0 0 0 3
1 0 2 0 0 0 3 penc 'abcdefg'
┌┬──┬┬────┬┬┬─┐
││ab││cdef│││g│
└┴──┴┴────┴┴┴─┘
```

As with the Partition-based representation, we must allow an additional element in the left argument after the end of the right argument in order to encode empty partitions after the end of the data.

This definition is nearly identical to the one used in Partitioned Enclose when the divider counts are Boolean. The only difference is in the first element: while in Partitioned Enclose a first element of 0 indicates that no division is started, and elements before the first 1 are excluded from the final partition, in the version here, a first element of 0 is like a 1 in Partitioned Enclose indicating that a division is started, while an initial 1 indicates that an empty division precedes the first non-empty division. The number used in the representation here is one higher than the one used by Partitioned Enclose. This encoding better represents complete partitions of the right argument because every vector on non-negative integers corresponds to a partition. In Partitioned Enclose vectors beginning with 0 correspond to incomplete partitions where some initial elements are not included. However, the partitioning used in Partitioned Enclose can still be produced by dropping the first division.

## Unification

The division-based and divider-based representations are dual to one another: counting the number of elements with no divisions in between and the number of dividers with no elements in between are symmetric concepts. We can convert between then using the Indices primitive and its inverse. The following diagram shows the relationships between the four representations. Note the symmetry in the graphs for target indices and division endpoints: the graphs are essentially transposes of one another. The Interval Index function can be used to convert between these two representations directly.

The relationship between the two kinds of partition representations is in principle symmetric, but we must introduce an asymmetry in order to handle the final division or divider (for infinite arrays there would be no need). There can always be elements past the last divider, or dividers beyond the last element. But dividers are placed between elements, and elements between dividers: effectively, they are offset by a half-index. Going halfway around the circle above must either accumulate or remove a half index; going all the way around by using the same transformation twice would add or drop an entire index. We must insert a step at some point in the cycle to account for this index, but it can be placed in any part of the diagram—there is no reason it must be in the lower-right corner as above.

The partitioning mechanisms shown above can be grouped in categories in several ways. The left and right halves of the diagram each contain vectors of the same length. This is because the vectors have the same domain: on the left, a value is given for each element to be partitioned, while on the right a value is given for each division or divider. The top and bottom halves also share common properties: representations on the top specify where elements should be placed (using either dense indices giving a position for each element or sparse indices giving how many elements go in each slot) while those on the bottom specify where dividers should be placed in the same sense.

Domain | |||
---|---|---|---|

Dividers | Divisions | ||

Positions | Elements | Target indices | Division lengths |

Dividers | Divider counts | Division endpoints |