Key: Difference between revisions

Jump to navigation Jump to search
234 bytes added ,  22:18, 10 September 2022
m
Text replacement - "<source" to "<syntaxhighlight"
(Problems)
m (Text replacement - "<source" to "<syntaxhighlight")
Tags: Mobile edit Mobile web edit
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
[[Monadic]]ally, Key will group identical [[major cell]]s together and applies the [[function]] operand once for each unique major cell. The function is applied with the unique major cell as left argument, while the right argument is the indices of major cells that match it:  
[[Monadic]]ally, Key will group identical [[major cell]]s together and applies the [[function]] operand once for each unique major cell. The function is applied with the unique major cell as left argument, while the right argument is the indices of major cells that match it:  


<source lang=apl>
<syntaxhighlight lang=apl>
       {⍺⍵}⌸'Mississippi'
       {⍺⍵}⌸'Mississippi'
┌─┬────────┐
┌─┬────────┐
Line 15: Line 15:
│p│9 10    │
│p│9 10    │
└─┴────────┘
└─┴────────┘
</source>
</syntaxhighlight>


In the [[dyadic]] case, Key applies the function to collections of major cells from the right argument corresponding to unique elements of the left argument:
In the [[dyadic]] case, Key applies the function to collections of major cells from the right argument corresponding to unique elements of the left argument:


<source lang=apl>
<syntaxhighlight lang=apl>
       'Mississippi'{⍺⍵}⌸'ABCDEFGHIJK'  
       'Mississippi'{⍺⍵}⌸'ABCDEFGHIJK'  
┌─┬────┐
┌─┬────┐
Line 30: Line 30:
│p│IJ  │
│p│IJ  │
└─┴────┘
└─┴────┘
</source>
</syntaxhighlight>


The monadic case, <source lang=apl inline>f⌸Y</source> is equivalent to <source lang=apl inline>Y f⌸ ⍳≢Y</source>.
The monadic case, <syntaxhighlight lang=apl inline>f⌸Y</syntaxhighlight> is equivalent to <syntaxhighlight lang=apl inline>Y f⌸ ⍳≢Y</syntaxhighlight>.


== Problems ==
== Problems ==
=== Vocabulary ===
=== Vocabulary ===
A common problem with Key is the inability to control the order of the result (as Key will use the order of appearance) and the "vocabulary" (as Key will never include information for a major cell that doesn't occur). For example, here we want to count occurrences of the letters A, C, G, T:
A common problem with Key is the inability to control the order of the result (as Key will use the order of appearance) and the "vocabulary" (as Key will never include information for a major cell that doesn't occur). For example, here we want to count occurrences of the letters A, C, G, T:
<source lang=apl>
<syntaxhighlight lang=apl>
       {⍺,≢⍵}⌸'TCCGCGGTGGCG'
       {⍺,≢⍵}⌸'TCCGCGGTGGCG'
T 2
T 2
C 4
C 4
G 6
G 6
</source>
</syntaxhighlight>
Since A is entirely missing in the argument, it isn't mentioned in the result either. Likewise, the result is mis-ordered due to G and T appearing before the first C. A common solution is to inject the vocabulary before the actual data, and then decrement from the counts:
Since A is entirely missing in the argument, it isn't mentioned in the result either. Likewise, the result is mis-ordered due to G and T appearing before the first C. A common solution is to inject the vocabulary before the actual data, and then decrement from the counts:
<source lang=apl>      {⍺,¯1+≢⍵}⌸'ACGT','TCCGCGGTGGCG'
<syntaxhighlight lang=apl>      {⍺,¯1+≢⍵}⌸'ACGT','TCCGCGGTGGCG'
A 0
A 0
C 4
C 4
G 6
G 6
T 2
T 2
</source>
</syntaxhighlight>
Now that the meaning of each count is known, the operand's left argument can be ignored, and the decrementing can be factored out from the operand:
Now that the meaning of each count is known, the operand's left argument can be ignored, and the decrementing can be factored out from the operand:
<source lang=apl>
<syntaxhighlight lang=apl>
       ¯1+{≢⍵}⌸'ACGT','TCCGCGGTGGCG'
       ¯1+{≢⍵}⌸'ACGT','TCCGCGGTGGCG'
0 4 6 2
0 4 6 2
</source>
</syntaxhighlight>
=== Computing the unique ===
=== Computing the unique ===
Key computes the set of [[unique]] major cells. Often, this collection is needed separately from the occurrence information, but can be hard to extract. For example, to get the most frequently occurring letter:
Key computes the set of [[unique]] major cells. Often, this collection is needed separately from the occurrence information, but can be hard to extract. For example, to get the most frequently occurring letter:
<source lang=apl>
<syntaxhighlight lang=apl>
       ⊃⍒{≢⍵}⌸'TCCGCGGTGGCG'
       ⊃⍒{≢⍵}⌸'TCCGCGGTGGCG'
3
3
</source>
</syntaxhighlight>
Notice that 3 is the index in the unique set of letters, and so it is tempting to write:
Notice that 3 is the index in the unique set of letters, and so it is tempting to write:
<source lang=apl>
<syntaxhighlight lang=apl>
       {(⊃⍒{≢⍵}⌸⍵)⌷∪⍵}'TCCGCGGTGGCG'
       {(⊃⍒{≢⍵}⌸⍵)⌷∪⍵}'TCCGCGGTGGCG'
G
G
</source>
</syntaxhighlight>
However, while this code works, it is inefficient in that the unique is computed twice. This can be avoided by letting Key return the unique and using that:
However, while this code works, it is inefficient in that the unique is computed twice. This can be avoided by letting Key return the unique and using that:
<source>
<syntaxhighlight lang=apl>
       (keys counts)←,⌿{⍺,≢⍵}⌸'TCCGCGGTGGCG'
       (keys counts)←,⌿{⍺,≢⍵}⌸'TCCGCGGTGGCG'
       keys⌷⍨⊃⍒counts
       keys⌷⍨⊃⍒counts
G
G
</source>
</syntaxhighlight>
Unfortunately, this can introduce a different inefficiency, in that the result of Key's operand can end up being a [[heterogeneous array]] (containing multiple [[datatype]]s), and these are stored as pointer arrays, consuming memory for one pointer per element, and forcing "pointer chasing" when addressing the data. A possible work-around is to collect the unique keys separately from the result of counts:
Unfortunately, this can introduce a different inefficiency, in that the result of Key's operand can end up being a [[heterogeneous array]] (containing multiple [[datatype]]s), and these are stored as pointer arrays, consuming memory for one pointer per element, and forcing "pointer chasing" when addressing the data. A possible work-around is to collect the unique keys separately from the result of counts:
<source>
<syntaxhighlight lang=apl>
       data←'TCCGCGGTGGCG'
       data←'TCCGCGGTGGCG'
       keys←0⌿data
       keys←0⌿data
Line 79: Line 79:
       keys⌷⍨⊃⍒counts
       keys⌷⍨⊃⍒counts
G
G
</source>
</syntaxhighlight>
If there are a large number of unique values, the repeated updating of the accumulating <source lang=apl inline>keys</source> variable can be an issue in itself.
If there are a large number of unique values, the repeated updating of the accumulating <syntaxhighlight lang=apl inline>keys</syntaxhighlight> variable can be an issue in itself.


== External links ==
== External links ==

Navigation menu