Hook: Difference between revisions

Jump to navigation Jump to search
1,093 bytes added ,  28 February
Rewrite to focus on Kap instead of BQN
(Use pre instead of source tags to avoid highlighting errors)
(Rewrite to focus on Kap instead of BQN)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Built-ins|Hooks|⍛|⍩}} are asymmetrical forms of [[function composition]] that first apply one of the composed [[function]]s to one [[argument]], then applies the other function to one argument and the result. [[Kap]] has the two [[operator]]s [[Beside|Compose]] (<syntaxhighlight lang=apl inline>∘</syntaxhighlight>) and [[Inverse compose]] (<syntaxhighlight lang=apl inline>⍛</syntaxhighlight>). [[BQN]] has Before (<code>⊸</code>) and After (<code>⟜</code>), which also serve the purpose of the [[Bind]] operator. In [[J]], a 2-[[train]] is a hook, while [[I]] adds the mirror image to give two functions (I has first-class functions but no operators) hook (<code>h</code>) and backhook (<code>H</code>).
Hook as an operator first appeared in [[A Dictionary of APL]] as [[Withe]] (<syntaxhighlight lang=apl inline>⍩</syntaxhighlight>). However, [[Ken Iverson|Iverson]] and [[Eugene McDonnell|McDonnell]]'s paper ''Phrasal Forms'', which introduced [[train]]s<ref>[[Ken Iverson]] and [[Eugene McDonnell]]. [http://www.jsoftware.com/papers/fork.htm Phrasal forms] at [[APL89]].</ref>, proposed hook as the meaning of a 2-train, and this was soon included in [[J]]. This definition specifies that <syntaxhighlight lang=j inline>(F G) y</syntaxhighlight> is <syntaxhighlight lang=j inline>y F G y</syntaxhighlight> and <syntaxhighlight lang=j inline>x (F G) y</syntaxhighlight> is <syntaxhighlight lang=j inline>x F G y</syntaxhighlight>. However, [[Roger Hui]] later opined that this definition was better suited to a dyadic operator (which could be denoted <syntaxhighlight lang=j inline>h.</syntaxhighlight>) than an element of syntax,<ref>[[Roger Hui]]. [https://code.jsoftware.com/wiki/Essays/Hook_Conjunction%3F Hook Conjunction?]. J Wiki essays. 2006. Accessed 2021-02-08.</ref> and defined the 2-train to represent [[Atop]] instead when he led the introduction of trains to [[Dyalog APL]]. By that time, Dyalog had long had the [[Beside]] (originally called ''Compose'') operator which is equivalent to <syntaxhighlight lang=j inline>x F h. G y</syntaxhighlight>, that is, the dyadic case. The monadic functionality can be achieved using [[Commute]] as <syntaxhighlight lang=apl inline>F∘G⍨y</syntaxhighlight> and the full [[ambivalent]] function can be written as <syntaxhighlight lang=apl inline>F∘G⍨⍨</syntaxhighlight>.
[[File:Hooks.png|thumb|right|Hook operators in [[BQN]]]]
[[File:Hooks.png|thumb|right|Hook operators in [[BQN]]]]
In order to maintain symmetry, [[Kap]] changes the meaning of <syntaxhighlight lang=apl inline>∘</syntaxhighlight> to be a proper hook, and thus aligns itself with [[I]] and [[BQN]], which also have two hooks. Kap defines Compose (<syntaxhighlight lang=apl inline>∘</syntaxhighlight>) to be the dyadic operator <syntaxhighlight lang=apl inline>{⍺←⍵ ⋄ ⍺ ⍺⍺ ⍵⍵ ⍵}</syntaxhighlight> and Inverse Compose (<syntaxhighlight lang=apl inline>⍛</syntaxhighlight>) to be <syntaxhighlight lang=apl inline>{⍺←⍵ ⋄ (⍺⍺ ⍺) ⍵⍵ ⍵}</syntaxhighlight>. In the dyadic case these operators are identical to [[Beside]] and [[Reverse Compose]] respectively, but in the monadic case, <syntaxhighlight lang=apl inline>∘</syntaxhighlight> differs from Beside because the argument is used twice: the second function application takes it as an argument directly in addition to the result of the first function application.


A '''hook''' is an asymmetrical form of function composition that first applies one of the composed functions to one argument, then applies the other function to one argument and the result. In [[J]], a 2-[[train]] is a hook, while [[I]] adds the mirror image to give two functions (I has first-class functions but no operators) hook (<code>h</code>) and backhook (<code>H</code>). [[BQN]] uses two [[operator]]s Before (<code>⊸</code>) and After (<code>⟜</code>), which also serve the purpose of the [[Bind]] operator.
The two hooks can be used together to form a [[split-compose]] construct:
 
The meaning of 2-train as hook was first proposed in [[Ken Iverson|Iverson]] and [[Eugene McDonnell|McDonnell]]'s paper ''Phrasal Forms'' introducing [[train]]s<ref>[[Ken Iverson]] and [[Eugene McDonnell]]. [http://www.jsoftware.com/papers/fork.htm Phrasal forms] at [[APL89]].</ref>, and soon included in [[J]]. This definition specifies that <source lang=j inline>(F G) y</source> is <source lang=j inline>y F G y</source> and <source lang=j inline>x (F G) y</source> is <source lang=j inline>x F G y</source>. However, [[Roger Hui]] later opined that this definition was better suited to a dyadic operator than an element of syntax,<ref>[[Roger Hui]]. [https://code.jsoftware.com/wiki/Essays/Hook_Conjunction%3F Hook Conjunction?]. J Wiki essays. 2006. Accessed 2021-02-08.</ref> and defined to 2-train to represent [[Atop]] instead when he led the introduction of trains to [[Dyalog APL]].
 
In [[I]] and [[BQN]], there are two hooks in order to maintain symmetry: for example, BQN defines Before (<code>⊸</code>) to be the dyadic operator <code>{(𝔽𝕨⊣𝕩)𝔾𝕩}</code> ("<code>𝔾</code>'s left argument comes from <code>𝔽</code>") and After (<code>⟜</code>) to be <code>{(𝕨⊣𝕩)𝔽𝔾𝕩}</code> ("<code>𝔽</code>'s right argument comes from <code>𝔾</code>"). In the dyadic case these functions are identical to [[Reverse Compose]] and [[Beside]] respectively, but in the monadic case they differ because the argument is used twice: the second function application takes it as an argument directly in addition to the result of the first function application.
 
Like [[Reverse Compose]], the two hooks can be used together to form a [[split-compose]] construct.
<pre>
<pre>
     3‿¯1‿4 ×⊸×⟜| ¯2‿¯7‿1
     3 ¯1 4 ×⍛×∘| ¯2 ¯7 1
2 ¯7 1
2 ¯7 1
</pre>{{Works in|[[BQN]]}}
</pre>{{Works in|[[Kap]]}}
This definition behaves differently that the Compose-based one when only one argument is given: in that case, it becomes a monadic 3-[[train]].
This definition behaves differently that the Compose-based one when only one argument is given; in that case, it becomes a monadic 3-[[train]].


The name "hook" was chosen based on the hook shape of a function call diagram such as the one below, taken from ''Phrasal Forms''.
The name "hook" was chosen based on the hook shape of a function call diagram such as the one below, taken from ''Phrasal Forms''.
Line 32: Line 30:


* J [https://www.jsoftware.com/help/dictionary/dictf.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/hook NuVoc]
* J [https://www.jsoftware.com/help/dictionary/dictf.htm Dictionary], [https://code.jsoftware.com/wiki/Vocabulary/hook NuVoc]
* [https://mlochbaum.github.io/BQN/tutorial/combinator.html#before-and-after BQN tutorials]
* [https://mlochbaum.github.io/BQN/doc/hook.html BQN]


== References ==
== References ==
<references />
<references />
{{APL built-ins}}[[Category:Primitive operators]]
{{APL syntax}}[[Category:Primitive operators]]

Navigation menu