Equal to: Difference between revisions

Jump to navigation Jump to search
171 bytes added ,  22:14, 10 September 2022
m
Text replacement - "<source" to "<syntaxhighlight"
m (Text replacement - "<source" to "<syntaxhighlight")
Line 1: Line 1:
{{Built-in|Equal to|<nowiki>=</nowiki>}} is a [[comparison function]] which tests whether argument elements are [[Tolerant comparison|tolerantly]] equal to each other: it returns 1 if the [[element]]s being compared [[match]] and 0 if they do not. It is the [[Not|negation]] of [[Not Equal to]] (<source lang=apl inline>≠</source>).
{{Built-in|Equal to|<nowiki>=</nowiki>}} is a [[comparison function]] which tests whether argument elements are [[Tolerant comparison|tolerantly]] equal to each other: it returns 1 if the [[element]]s being compared [[match]] and 0 if they do not. It is the [[Not|negation]] of [[Not Equal to]] (<syntaxhighlight lang=apl inline>≠</source>).


APL's <source lang=apl inline>=</source> differs from the usage of <math>=</math> in [[Comparison with traditional mathematics|traditional mathematical notation]] by having an implied [[Ken_Iverson#Iverson_bracket|Iverson bracket]]. Thus, <source lang=apl inline>i=j</source> is APL is equivalent to <math>[i=j]</math> or <math>\delta_{ij}</math> ([[wikipedia:Kronecker delta|Kronecker delta]]) in mathematics.
APL's <syntaxhighlight lang=apl inline>=</source> differs from the usage of <math>=</math> in [[Comparison with traditional mathematics|traditional mathematical notation]] by having an implied [[Ken_Iverson#Iverson_bracket|Iverson bracket]]. Thus, <syntaxhighlight lang=apl inline>i=j</source> is APL is equivalent to <math>[i=j]</math> or <math>\delta_{ij}</math> ([[wikipedia:Kronecker delta|Kronecker delta]]) in mathematics.


== Examples ==
== Examples ==


Equal to compares arrays one [[element]] at a time, returning 1 when elements match and 0 when they do not.
Equal to compares arrays one [[element]] at a time, returning 1 when elements match and 0 when they do not.
<source lang=apl>
<syntaxhighlight lang=apl>
       3 2 1 = 1 2 3
       3 2 1 = 1 2 3
0 1 0
0 1 0
Line 15: Line 15:
</source>
</source>
It is subject to [[comparison tolerance]]: floating-point numbers which are very close together are considered equal, even though they are slightly different:
It is subject to [[comparison tolerance]]: floating-point numbers which are very close together are considered equal, even though they are slightly different:
<source lang=apl>
<syntaxhighlight lang=apl>
       ⎕CT
       ⎕CT
1E¯14
1E¯14
Line 27: Line 27:
</source>
</source>
In a [[Nested array model|nested]] APL, Equal to is pervasive, and compares all [[simple scalar]]s found in a [[nested array]].
In a [[Nested array model|nested]] APL, Equal to is pervasive, and compares all [[simple scalar]]s found in a [[nested array]].
<source lang=apl>
<syntaxhighlight lang=apl>
       ⎕←n ← ((2 1)0)(1 0 3)(2 2⍴4 0)
       ⎕←n ← ((2 1)0)(1 0 3)(2 2⍴4 0)
┌───────┬─────┬───┐
┌───────┬─────┬───┐
Line 42: Line 42:
</source>
</source>
In a [[Flat array model|flat]] array language such as [[J]], it instead compares [[Box]]es directly, since they are the [[element]]s of a boxed array.
In a [[Flat array model|flat]] array language such as [[J]], it instead compares [[Box]]es directly, since they are the [[element]]s of a boxed array.
<source lang=j>
<syntaxhighlight lang=j>
   (<'string') = 'which';'is';'string';'?'
   (<'string') = 'which';'is';'string';'?'
0 0 1 0
0 0 1 0
Line 51: Line 51:
When the arguments to Equal to are [[Boolean]], it is the [[wikipedia:Logical biconditional|Logical biconditional]] function, or the [[Not|negation]] of the [[xor]] function (which is [[Not Equal to]] restricted to Boolean arguments):
When the arguments to Equal to are [[Boolean]], it is the [[wikipedia:Logical biconditional|Logical biconditional]] function, or the [[Not|negation]] of the [[xor]] function (which is [[Not Equal to]] restricted to Boolean arguments):
{|class=wikitable
{|class=wikitable
!<source lang=apl inline>=</source>!!<source lang=apl inline>0</source>!!<source lang=apl inline>1</source>
!<syntaxhighlight lang=apl inline>=</source>!!<syntaxhighlight lang=apl inline>0</source>!!<syntaxhighlight lang=apl inline>1</source>
|-
|-
!<source lang=apl inline>0</source>
!<syntaxhighlight lang=apl inline>0</source>
|<source lang=apl inline>1</source>||<source lang=apl inline>0</source>
|<syntaxhighlight lang=apl inline>1</source>||<syntaxhighlight lang=apl inline>0</source>
|-
|-
!<source lang=apl inline>1</source>
!<syntaxhighlight lang=apl inline>1</source>
|<source lang=apl inline>0</source>||<source lang=apl inline>1</source>
|<syntaxhighlight lang=apl inline>0</source>||<syntaxhighlight lang=apl inline>1</source>
|}
|}
In the context of logic, it can be read as ''if and only if''. This function is also known as xnor or the Kronecker delta.
In the context of logic, it can be read as ''if and only if''. This function is also known as xnor or the Kronecker delta.


[[Reduction]] with <source lang=apl inline>=</source> is the same as reduction with xor (<source lang=apl inline>≠</source>), but [[Not|inverted]] if the number of reduced elements is even. The left and right [[identity element]] for Boolean <source lang=apl inline>=</source> is 1.
[[Reduction]] with <syntaxhighlight lang=apl inline>=</source> is the same as reduction with xor (<syntaxhighlight lang=apl inline>≠</source>), but [[Not|inverted]] if the number of reduced elements is even. The left and right [[identity element]] for Boolean <syntaxhighlight lang=apl inline>=</source> is 1.


== External links ==
== External links ==

Navigation menu