Each: Difference between revisions

From APL Wiki
Jump to navigation Jump to search
Miraheze>Adám Brudzewsky
m (Text replacement - "<code>" to "<source lang=apl inline>")
m (Text replacement - "{{APL built-ins}}" to "{{APL built-ins}}Category:Primitive operators")
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Primitive|Each}} is a primitive [[monadic operator]] which applies its [[operand]] to each [[element]] of the [[arguments]], and returns an array whose elements are the results. If two arguments are given, their elements are matched using [[conformability]] rules.
{{Built-in|Each|¨}} is a [[primitive operator|primitive]] [[monadic operator]] which applies its [[operand]] to each [[element]] of the [[argument]]s, and returns an array whose elements are the results. If two arguments are given, their elements are matched using [[conformability]] rules.


Each is defined only in [[Nested array model|nested]] APLs. Some [[Flat array model|flat]] APLs obtain analogous functionality by using an [[Under]] operator with [[close composition]] along with the [[Function rank|rank]]-0 function [[Disclose]] (or Unbox). In [[SHARP APL]] this is written <source lang=apl inline>f¨></code>. In [[J]] it is <source lang=apl inline>f&.></code>.
Each is defined only in [[Nested array model|nested]] APLs. Some [[Flat array model|flat]] APLs obtain analogous functionality by using an [[Under]] operator with [[close composition]] along with the [[Function rank|rank]]-0 function [[Disclose]] (or Unbox). In [[SHARP APL]] this is written <source lang=apl inline>f¨></source>. In [[J]] it is <source lang=j inline>f&.></source>.


Each differs from the [[Rank operator]] with rank 0 in that the operand arguments and results are not enclosed. As the [[elements]] of a nested array they need not be [[scalar]].
Each differs from the [[Rank operator]] with rank 0 in that the operand arguments and results are not [[enclose]]d. As the [[elements]] of a nested array they need not be [[scalar]].


== External links ==
== External links ==
Line 14: Line 14:


* [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Monadic%20Operand.htm Dyalog] (monadic operand), [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Dyadic%20Operand.htm Dyalog] (dyadic operand)
* [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Monadic%20Operand.htm Dyalog] (monadic operand), [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Dyadic%20Operand.htm Dyalog] (dyadic operand)
* [http://microapl.com/apl_help/ch_020_020_900.htm APLX]
* [http://microapl.com/apl_help/ch_020_020_900.htm APLX]


{{APL built-ins}}
{{APL built-ins}}[[Category:Primitive operators]]

Revision as of 13:44, 30 April 2020

¨

Each (¨) is a primitive monadic operator which applies its operand to each element of the arguments, and returns an array whose elements are the results. If two arguments are given, their elements are matched using conformability rules.

Each is defined only in nested APLs. Some flat APLs obtain analogous functionality by using an Under operator with close composition along with the rank-0 function Disclose (or Unbox). In SHARP APL this is written f¨>. In J it is f&.>.

Each differs from the Rank operator with rank 0 in that the operand arguments and results are not enclosed. As the elements of a nested array they need not be scalar.

External links

Lessons

Documentation


APL built-ins [edit]
Primitives (Timeline) Functions
Scalar
Monadic ConjugateNegateSignumReciprocalMagnitudeExponentialNatural LogarithmFloorCeilingFactorialNotPi TimesRollTypeImaginarySquare Root
Dyadic AddSubtractTimesDivideResiduePowerLogarithmMinimumMaximumBinomialComparison functionsBoolean functions (And, Or, Nand, Nor) ∙ GCDLCMCircularComplexRoot
Non-Scalar
Structural ShapeReshapeTallyDepthRavelEnlistTableCatenateReverseRotateTransposeRazeMixSplitEncloseNestCut (K)PairLinkPartitioned EnclosePartition
Selection FirstPickTakeDropUniqueIdentityStopSelectReplicateExpandSet functions (IntersectionUnionWithout) ∙ Bracket indexingIndexCartesian ProductSort
Selector Index generatorGradeIndex OfInterval IndexIndicesDealPrefix and suffix vectors
Computational MatchNot MatchMembershipFindNub SieveEncodeDecodeMatrix InverseMatrix DivideFormatExecuteMaterialiseRange
Operators Monadic EachCommuteConstantReplicateExpandReduceWindowed ReduceScanOuter ProductKeyI-BeamSpawnFunction axis
Dyadic BindCompositions (Compose, Reverse Compose, Beside, Withe, Atop, Over) ∙ Inner ProductDeterminantPowerAtUnderRankDepthVariantStencilCutDirect definition (operator)
Quad names Index originComparison toleranceMigration levelAtomic vector