Dyadic function: Difference between revisions

Jump to navigation Jump to search
14 bytes removed ,  23:25, 16 November 2019
no edit summary
Miraheze>Marshall
No edit summary
Miraheze>Adám Brudzewsky
No edit summary
Line 14: Line 14:
Dyadic functions in APL are designed so that the right argument is primary and the left secondary. Often the right argument consists of data to be manipulated while the left controls how it is modified. For example, in [[Reshape]], the right argument contains data while the left contains a new [[shape]] for it—arguably metadata. This pattern is used because of APL's right-to-left evaluation. It improves control flow by making the left argument shorter more of the time. This reduces the need for parentheses and allows a reader to scan an expression from right to left all at once, without jumping back and forth. When a function does not fit this pattern (such a mismatch can happen with [[Squad]], in which either argument might be considered primary depending on context), the [[Commute]] operator can be used to change it so that it does.
Dyadic functions in APL are designed so that the right argument is primary and the left secondary. Often the right argument consists of data to be manipulated while the left controls how it is modified. For example, in [[Reshape]], the right argument contains data while the left contains a new [[shape]] for it—arguably metadata. This pattern is used because of APL's right-to-left evaluation. It improves control flow by making the left argument shorter more of the time. This reduces the need for parentheses and allows a reader to scan an expression from right to left all at once, without jumping back and forth. When a function does not fit this pattern (such a mismatch can happen with [[Squad]], in which either argument might be considered primary depending on context), the [[Commute]] operator can be used to change it so that it does.


{{APL programming language}}
{{APL syntax}}

Navigation menu