Each: Difference between revisions
Miraheze>Adám Brudzewsky No edit summary |
m (Text replacement - "</source>" to "</syntaxhighlight>") Tags: Mobile edit Mobile web edit |
||
(14 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Built-in|Each|¨}} is a primitive [[monadic operator]] which applies its [[operand]] to each [[element]] of the [[ | {{Built-in|Each|¨}} is a [[primitive operator|primitive]] [[monadic operator]] which applies its [[operand]] to each [[element]] of the [[argument]]s, and returns an array whose elements are the results. If two arguments are given, their elements are matched using [[conformability]] rules. | ||
== Definition == | |||
Each is defined only in [[Nested array model|nested]] APLs. Some [[Flat array model|flat]] APLs obtain analogous functionality by using an [[Under]] operator with [[close composition]] along with the [[Function rank|rank]]-0 function [[Disclose]] (or Unbox). In [[SHARP APL]] this is written <syntaxhighlight lang=apl inline>f¨></syntaxhighlight>. In [[J]] it is <syntaxhighlight lang=j inline>f&.></syntaxhighlight>. | |||
Each | Each differs from the [[Rank operator]] with rank 0 in that the operand arguments and results are not [[enclose]]d. As the [[elements]] of a nested array they need not be [[scalar]]. <syntaxhighlight lang=apl inline>f¨</syntaxhighlight> can therefore be defined as <syntaxhighlight lang=apl inline>⊂⍤f⍥⊃⍤0</syntaxhighlight>. | ||
Each | The Each operator has no effect on [[scalar function]]s, since these functions already map over each array element. For example, both expressions below have the same meaning, since <syntaxhighlight lang=apl inline>+</syntaxhighlight> is a scalar function. | ||
<syntaxhighlight lang=apl> | |||
1 + 1 2 3 4 | |||
2 3 4 5 | |||
1 +¨ 1 2 3 4 | |||
2 3 4 5 | |||
</syntaxhighlight> | |||
== Examples == | |||
<syntaxhighlight lang=apl> | |||
1,1 2 3 ⍝ join 1 with 1 2 3 | |||
1 1 2 3 | |||
1,¨1 2 3 ⍝ join 1 with each element of 1 2 3 | |||
┌───┬───┬───┐ | |||
│1 1│1 2│1 3│ | |||
└───┴───┴───┘ | |||
x←'abc' 'def' 'ghi' | |||
⌽x ⍝ reverse x | |||
┌───┬───┬───┐ | |||
│ghi│def│abc│ | |||
└───┴───┴───┘ | |||
⌽¨x ⍝ reverse each element of x | |||
┌───┬───┬───┐ | |||
│cba│fed│ihg│ | |||
└───┴───┴───┘ | |||
</syntaxhighlight> | |||
=== Mapping === | |||
It is very common to pair up an entire array with each element of a different array. There are two common ways to do this using Each. The first is to [[enclose]] the argument that is to be used as a whole for each element of the other array: | |||
<syntaxhighlight lang=apl> | |||
(⊂10 20 30),¨1 2 3 ⍝ Computes (10 20 30,1)(10 20 30,2)(10 20 30,3) | |||
┌──────────┬──────────┬──────────┐ | |||
│10 20 30 1│10 20 30 2│10 20 30 3│ | |||
└──────────┴──────────┴──────────┘ | |||
10 20 30,¨⊂1 2 3 ⍝ Computes (10,1 2 3)(20,1 2 3)(30,1 2 3) | |||
┌────────┬────────┬────────┐ | |||
│10 1 2 3│20 1 2 3│30 1 2 3│ | |||
└────────┴────────┴────────┘ | |||
</syntaxhighlight> | |||
The other method is by [[bind]]ing the argument that is to be used as a whole to the function, deriving a monadic function, which is then applied using Each: | |||
<syntaxhighlight lang=apl> | |||
10 20 30∘,¨1 2 3 ⍝ Computes (10 20 30,1)(10 20 30,2)(10 20 30,3) | |||
┌──────────┬──────────┬──────────┐ | |||
│10 20 30 1│10 20 30 2│10 20 30 3│ | |||
└──────────┴──────────┴──────────┘ | |||
,∘1 2 3¨10 20 30 ⍝ Computes (10,1 2 3)(20,1 2 3)(30,1 2 3) | |||
┌────────┬────────┬────────┐ | |||
│10 1 2 3│20 1 2 3│30 1 2 3│ | |||
└────────┴────────┴────────┘ | |||
</syntaxhighlight> | |||
Note how binding a right argument derives a monadic function which still takes its single argument on the right. | |||
=== Selecting === | |||
An enclosed array is a [[scalar]], which is subject to [[scalar extension]]. This can be used to simulate [[Outer Product|outer product]] by a one-sided Each (pair the entire right argument with each element of the left argument, or vice versa). An application of this behavior is the "chipmunk idiom" <syntaxhighlight lang=apl inline>X⊃¨⊂Y</syntaxhighlight>, which simulates <syntaxhighlight lang=apl inline>Y[X]</syntaxhighlight> for (possibly nested) [[vector]] Y and [[simple]] X: | |||
<syntaxhighlight lang=apl> | |||
(2 2⍴1 2 2 1)⊃¨⊂(1 2)(3 4)(5 6) ⍝ Computes (1 2)(3 4)(5 6)[2 2⍴1 2 2 1] | |||
┌───┬───┐ | |||
│1 2│3 4│ | |||
├───┼───┤ | |||
│3 4│1 2│ | |||
└───┴───┘ | |||
</syntaxhighlight> | |||
== External links == | == External links == | ||
Line 14: | Line 78: | ||
* [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Monadic%20Operand.htm Dyalog] (monadic operand), [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Dyadic%20Operand.htm Dyalog] (dyadic operand) | * [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Monadic%20Operand.htm Dyalog] (monadic operand), [https://help.dyalog.com/latest/index.htm#Language/Primitive%20Operators/Each%20with%20Dyadic%20Operand.htm Dyalog] (dyadic operand) | ||
* [http://microapl.com/apl_help/ch_020_020_900.htm APLX] | * [http://microapl.com/apl_help/ch_020_020_900.htm APLX] | ||
* [https://mlochbaum.github.io/BQN/doc/map.html#each BQN] | |||
{{APL built-ins}} | {{APL built-ins}}[[Category:Primitive operators]] |
Latest revision as of 22:16, 10 September 2022
¨
|
Each (¨
) is a primitive monadic operator which applies its operand to each element of the arguments, and returns an array whose elements are the results. If two arguments are given, their elements are matched using conformability rules.
Definition
Each is defined only in nested APLs. Some flat APLs obtain analogous functionality by using an Under operator with close composition along with the rank-0 function Disclose (or Unbox). In SHARP APL this is written f¨>
. In J it is f&.>
.
Each differs from the Rank operator with rank 0 in that the operand arguments and results are not enclosed. As the elements of a nested array they need not be scalar. f¨
can therefore be defined as ⊂⍤f⍥⊃⍤0
.
The Each operator has no effect on scalar functions, since these functions already map over each array element. For example, both expressions below have the same meaning, since +
is a scalar function.
1 + 1 2 3 4 2 3 4 5 1 +¨ 1 2 3 4 2 3 4 5
Examples
1,1 2 3 ⍝ join 1 with 1 2 3 1 1 2 3 1,¨1 2 3 ⍝ join 1 with each element of 1 2 3 ┌───┬───┬───┐ │1 1│1 2│1 3│ └───┴───┴───┘ x←'abc' 'def' 'ghi' ⌽x ⍝ reverse x ┌───┬───┬───┐ │ghi│def│abc│ └───┴───┴───┘ ⌽¨x ⍝ reverse each element of x ┌───┬───┬───┐ │cba│fed│ihg│ └───┴───┴───┘
Mapping
It is very common to pair up an entire array with each element of a different array. There are two common ways to do this using Each. The first is to enclose the argument that is to be used as a whole for each element of the other array:
(⊂10 20 30),¨1 2 3 ⍝ Computes (10 20 30,1)(10 20 30,2)(10 20 30,3) ┌──────────┬──────────┬──────────┐ │10 20 30 1│10 20 30 2│10 20 30 3│ └──────────┴──────────┴──────────┘ 10 20 30,¨⊂1 2 3 ⍝ Computes (10,1 2 3)(20,1 2 3)(30,1 2 3) ┌────────┬────────┬────────┐ │10 1 2 3│20 1 2 3│30 1 2 3│ └────────┴────────┴────────┘
The other method is by binding the argument that is to be used as a whole to the function, deriving a monadic function, which is then applied using Each:
10 20 30∘,¨1 2 3 ⍝ Computes (10 20 30,1)(10 20 30,2)(10 20 30,3) ┌──────────┬──────────┬──────────┐ │10 20 30 1│10 20 30 2│10 20 30 3│ └──────────┴──────────┴──────────┘ ,∘1 2 3¨10 20 30 ⍝ Computes (10,1 2 3)(20,1 2 3)(30,1 2 3) ┌────────┬────────┬────────┐ │10 1 2 3│20 1 2 3│30 1 2 3│ └────────┴────────┴────────┘
Note how binding a right argument derives a monadic function which still takes its single argument on the right.
Selecting
An enclosed array is a scalar, which is subject to scalar extension. This can be used to simulate outer product by a one-sided Each (pair the entire right argument with each element of the left argument, or vice versa). An application of this behavior is the "chipmunk idiom" X⊃¨⊂Y
, which simulates Y[X]
for (possibly nested) vector Y and simple X:
(2 2⍴1 2 2 1)⊃¨⊂(1 2)(3 4)(5 6) ⍝ Computes (1 2)(3 4)(5 6)[2 2⍴1 2 2 1] ┌───┬───┐ │1 2│3 4│ ├───┼───┤ │3 4│1 2│ └───┴───┘
External links
Lessons
Documentation