
The Derivative Revisited

Introduction
In 1979 Ken Iverson wrote a paper on the derivative as part of the ACM APL Conference [0]. In 8 pages he cov-
ered a lot of ground. His discussion of the derivative goes way beyond dy/dx. It deals with derivatives of the most
general type. This article revisits much of that paper and attempts to bring the notation up to date. It also provides
an APL model of the derivative operator.

(Ken Iverson did himself revisit this topic in 2002. "Calculus" is written in J and may be found at [6].)

Many of Iverson’s suggestions for extensions to the language proposed in the 1970s and 1980s have now been
implemented but with some changes to the notation. For example, Iverson uses a scalar plus operator with the
combined symbol “plus overbar” (not yet in the Unicode standard). This operator produces a derived function
which is the sum of two functions:

 plusbar←{(⍺⍺ ⍵)+⍵⍵ ⍵}

Of course, nowadays we recognize this as a train and we can write plusbar←{(⍺⍺+⍵⍵)⍵} or just fplusg←f+g.

Similarly, Iverson defines operators for inner and outer products as follows:

 f⊕g x ←→ (f x)+.×g x f⊗g x ←→ (f x)∘.×g x

Again, trains can deal with this in a quite general way:

 f⊕g x ←→ (f+.×g)x f⊗g x ←→ (f∘.×g)x

The APL environment
All of the text in the APL385 Unicode font is executable in APL. The particular APL used here is Dyalog APL
17.0 with:

 ⎕io←0 ⋄ ⎕pp←6

]boxing on

(Dyalog APL is freely available for non-commercial use at www.dyalog.com.)

Supporting operators and functions
This article assumes that a number of operators and functions are already in place. For convenience their defini-
tions are collected here, with minimal comment.

min←{⌊/,⍵} Minimum
max←{⌈/,⍵} Maximum

num←{×/⍴⍵} Number
sum←{+/,⍵} Sum

mean←{(sum÷num)⍵} Mean
sop←{+/,⍺×⍵} Sum of product
ssq←{sop⍨⍵} Sum of squares
rnd←{⍺×⌊0.5+⍵÷⍺} Round

Page of 1 23

http://www.dyalog.com

timer←{∆∆j←1⌷⎕ai ⋄ ∆∆k←⍎⍵ ⋄ 0.001×∆∆j-⍨1⌷⎕ai} Execution time in seconds
cells←{⊂⍤⍺⊢⍵} Cells of an array
disp←{⊂⍤2⊢⍵} Display higher rank array

Function rank
An essential concept is function rank. Iverson [0] describes this at p. 347 as:

"We will characterize the rank of a monadic function by a two-element vector,
whose last element specifies the minimum rank of the argument on which the
function is normally defined, and whose first specifies the rank of the result
when the function is applied to an argument of minimum rank.”

Iverson associates two rank integers with a function. The second of these is the rank of the argument that can be
used with the function without producing a frame. The first is the rank of the result so produced. Nowadays, we
usually only concern ourselves with the second of these. Herein, when we use a single integer or refer to a “rank
k” function, we are referring to just the second integer, the function argument rank.

Iverson is well aware that functions can be usefully applied to values that have rank greater than the function ar-
gument rank. There's no need to look further than the scheme for scalar extension already present in APL from
day one. This allows a simple function, perhaps something like {⍵*2}, which is a rank 0 function defined for
scalars, to be extended to arrays of any rank. That's why the following does something useful rather than produc-
ing an error:

 {⍵*2} 2 3⍴⍳6 Scalar extension at work
0 1 4

9 16 25

Let’s assume that a function f has rank s. This means that if f’s argument is an array of greater rank then it will be
treated as a frame of cells. Each cell will be of rank s and the frame will have shape of whatever is left over. By
convention, the cells use trailing elements of the shape; the frame uses leading elements. We’ll assume the appli-
cation of f to an array of rank s produces a result of shape sir. The result is of shape fr,sir.

For example, consider the function {+/⍵}, which is of rank 1. When it is applied to an array of higher order, say
rank k, the result will be of the form fr,sir where fr is the shape of the frame and sir is the shape of an indi-
vidual result. sir is found by considering the application of f to an array of rank 1, a vector. This individual result
is the sum of a vector, which is a scalar. It’s shape, sir, is the empty vector ⍬. As the rank of this function is 1, fr
is k-1. Combining these together gives the shape of the complete result as k-1.

Now let’s consider the function {+/+/⍵}⍤3 applied to an array of shape 5 9 3 7 4 2. This function uses cells of
rank 3 (i.e. of shape 7 4 2) producing results of rank 1 (sir←,7). As this is a rank 3 function, the frame will be of
shape fr←5 9 3. Combining these together produces a result of shape fr,sir which is 5 9 3 7.

 ⍴3 cells x←5 9 3 7 4 2⍴3

5 9 3

 ⍴⊃3 cells x

7 4 2

 ⍴{+/+/⍵}⍤3⊢x

5 9 3 7

Page of 2 23

The Derivative Operator

The derivative operator ∆ applied to a monadic function f of arbitrary rank s produces a derived function df of the
same rank as f and the concepts of frame, cells and the shape of a result all apply to df exactly as they do to any
other function.

The shape of the result
This means that the result of applying df to an array x should be expected to produce a result of shape fr,sir. Of
course, if s≥⍴⍴x, the frame fr is empty. So what is sir, the shape of the individual result for a derivative? To an-
swer that question, we need to look at Iverson's definition for the derivative operator:

“If I and J are vector indices of of F A and A, respectively, then (since
the result rank of F∆ is +/R), I,J is a vector index of F∆ A. We now de-
fine F∆ by specifying the value of each element (I,J)⌷F∆ A as follows:  
 
(I,J)⌷F∆ A ←→ Limit (S→0) of (÷S)×I⌷(F A+S×J∧.=D⊤D⍴⍳×/D←⍴A)-F A

In other words, element I,J of F∆ A is the derivative of ‘the Ith compo-
nent function of F’ with respect to element J of of the argument, and is
referred to as the ‘partial derivative (of the component function) with
respect to the Jth variable’.”

This makes it clear that sir is made up of two parts: the first part corresponds to ⍴f a, where a is an s-cell of x;
the second part is just the shape of the cell a. In other words, the complete set of partial derivatives requires calcu-
lating the variation of the result value (which may be an array) for changes in each element of its individual cell
(which may also be an array).

In summary, the shape of the result produced by the derivative of a function f with rank s applied to an argument
x is made up of three parts:

• The shape of an individual cell. This is a cell of the minimum rank s that f can handle. The shape of this
is sic←(-s⌊⍴⍴x)↑⍴x.

• A frame of the shape elements remaining after the shape of an individual cell is removed. The shape of
this is fr←(-s)↓⍴x.

• The shape of the individual result produced by the application of f to a representative s-cell of x. This is
sir←⍴f⊃s cells x.

The shape of the final result is obtained by combining these three parts together as fr,sir,sic.

Page of 3 23

The tables below show how this works out for two representative functions:

Iverson's definition
Recall Iverson's definition from [0] of the derivative operator:

(I,J)⌷F∆ A ←→ Limit (S→0) of (÷S)×I⌷(F A+S×J∧.=D⊤D⍴⍳×/D←⍴A)-F A

We can define an APL operator to emulate this as:

∆ij←{s←1e¯7 ⋄ i j←⍺ ⋄ (÷s)×i⌷(⍺⍺ ⍵+s×j∧.=d⊤d⍴⍳×/d←⍴⍵)-⍺⍺ ⍵}

The first thing to notice is that this definition does not take a limit as s tends to 0. It simply makes a numeric ap-
proximation with s←0.0000001.

∆ij is a monadic operator with a left argument of a function. The result is a dyadic derived function. Its left argu-
ment is two elements, both vectors, the first a vector index into f x, the second a vector index into x. The right
argument x is the array at which the derivative is to be evaluated. So, for example:

 f←{+/⍵*2} A rank 1 function
 f x←3 1 7 2

63

Argument of shape

⍬ 4 4 5 4 5 6 4 5 6 7

{⍵*2}
applied
with
rank

0 ⍬ 4 4 5 4 5 6 4 5 6 7

1 ⍬ 4 4 4 5 5 4 5 6 6 4 5 6 7 7

2 ⍬ 4 4 4 5 4 5 4 5 6 5 6 4 5 6 7 6 7

3 ⍬ 4 4 4 5 4 5 4 5 6 4 5 6 4 5 6 7 5 6 7

Argument of shape

⍬ 4 4 5 4 5 6 4 5 6 7

{(max,min,mean)⍵}
applied
with
rank

0 3 4 3 4 5 3 4 5 6 3 4 5 6 7 3

1 3 3 4 4 3 5 4 5 3 6 4 5 6 3 7

2 3 3 4 3 4 5 4 3 5 6 4 5 3 6 7

3 3 3 4 3 4 5 3 4 5 6 4 3 5 6 7

Page of 4 23

For this function f, the derivative at x has no frame (fr←⍬), a scalar individual result (sir←⍬) and cells which are
vectors (sic←1). The result is therefore a vector and we can use ∆ij to pick out the various elements of the result:

 df←f ∆ij

 (⍬ 0 df x),(⍬ 1 df x),(⍬ 2 df x),⍬ 3 df x

6 2 14 4

As the result of applying{+/⍵*2} to a vector is a scalar, the value for the i index has to be the empty vector (to
conform with the index selection function ⌷). The values for the j index range through 0 to 3 (that is ⍳⍴x).

Let’s see what happens with a different function. We’ll use {⍵*3} and force it to have a rank of 1.

 f←{⍵*3}⍤1

 f x

27 1 343 8

For this function f, the derivative at x has no frame (fr←⍬), a vector individual result (sir←1) and cells which are
vectors (sic←1). The result is therefore of rank 2. Now when we use the ∆ij operator, both the i and j arguments
can range from 0 to 3.

 df←f ∆ij

 (0 0 df x),(0 1 df x),(0 2 df x),0 3 df x

27 0 0 0

 (1 0 df x),(1 1 df x),(1 2 df x),1 3 df x

0 3 0 0

 (2 0 df x),(2 1 df x),(2 2 df x),2 3 df x

0 0 147 0

 (3 0 df x),(3 1 df x),(3 2 df x),3 3 df a

0 0 0 12

Here’s the explanation of the values in this result. The first row shows how the first element of the function’s re-
sult varies when each element of the argument is changed. This has a non-zero value only in the first position. The
second row does the same for the second element of the result; and so on.

In traditional mathematical notation, if we call the elements of the result f0, f1, f2 and f3 and the elements of the
argument x0, x1, x2 and x3, this matrix is:

∂f0/∂x0 ∂f0/∂x1 ∂f0/∂x2 ∂f0/∂x3

∂f1/∂x0 ∂f1/∂x1 ∂f1/∂x2 ∂f1/∂x3

∂f2/∂x0 ∂f2/∂x1 ∂f2/∂x2 ∂f2/∂x3

∂f3/∂x0 ∂f3/∂x1 ∂f3/∂x2 ∂f3/∂x3

An operator for the derivative
Let’s define an operator ∆ to produce the full set of partial derivatives.

In order to correctly model the derivative operator, we need to know the rank of the function to which it is to be
applied. This is necessary so that the shape of the data argument can be broken up into its frame and cells. In J,
this can be discovered with the f b. 0 verb. Unfortunately, this sort of information is not available in Dyalog
APL (yet) and we must do something else.

Page of 5 23

The first option is simply to require that the function rank be specified as the left argument to the derived function.
This gives correct results but is unnecessary when frames are not involved. A less cumbersome approach is to de-
fine ∆ including the assumption there is no frame involved but with the caveat:

If the rank s of the function f is less than that of the argument x, then the derivative f ∆ must be
applied with rank s.

Here is a definition of a derivative operator ∆.

Note that:

• The function argument f is executed by ∆. If f relies on global variables, then the values used may be those
localized within ∆. This is likely to be incorrect. The problem can be pushed out of sight by prefixing every
name used within the definition of ∆ with a very uncommon prefix (such as two underbar characters). For
reasons of readability, the definition of ∆ above leaves out those prefix characters – although they should be
present in the workspace definition.

• This definition works by looping through every element of the argument once. This could have been coded
without a loop but doing so requires more memory.

Here are two examples. The first was introduced earlier and is just restated using ∆ rather than ∆ij:

 f←{⍵*3}⍤1 ⋄ x←3 1 7 2

 f ∆ x (or equivalently f ∆⍤1⊢x)
27 0 0 0
 0 3 0 0
 0 0 147 0
 0 0 0 12

r←(f ∆)x;c;p;q;dx;d;j;n;sf;sx;t

 ⍝ Derivative of function f at x.

 ⍝ Assumes that the application of f to x does not produce a frame.

 ⍝ Coding comments:

 ⍝ Uses a loop to reduce memory usage.

 ⍝ Careless regard by f for the locals used here could be fatal.

 sf←⍴p←f x ⋄ sx←⍴x ⋄ dx←0.000001×{⍵+⍵=0}x←,x

 r←(×/sx,sf)⍴p ⋄ c←0 ⋄ j←0

 :While c<⍴dx

 q←x ⋄ d←c⌷dx ⋄ (c⌷q)+←d

 n←⍴t←,((f sx⍴q)-p)÷d ⋄ r[j+⍳n]←t

 c+←1 ⋄ j+←n

 :EndWhile

 r←(sx,sf)⍴r ⋄ r←((⍴sf)⌽⍳⍴⍴r)⍉r

Page of 6 23

The second is a little more elaborate. The derivative under examination is for the function {(max,min,mean)⍵}⍤2
evaluated with a rank 3 data argument.

 ⎕rl←16807 For repeatability.
 f←{(max,min,mean)⍵}⍤2 ⋄ x←?4 5 6⍴9

 df←f ∆

 ⍴z←df⍤2⊢x

4 3 5 6

Here's what happens. The function f is of rank 2, transforming matrices into 3 element vectors. The derived func-
tionative df is applied with rank 2. This means that there is a frame (fr←4), individual cells are matrices (sic←5
6) and each individual result is a vector (sir←3). The result is of shape 4 3 5 6.

 disp x
┌───────────┬───────────┬───────────┬───────────┐
│3 2 3 0 4 2│2 5 6 0 7 5│4 7 4 5 7 3│2 4 8 8 7 5│
│1 1 4 8 7 3│3 0 2 4 7 2│2 6 5 1 1 6│0 6 5 4 1 3│
│1 1 5 7 0 8│1 0 0 7 2 4│2 1 2 8 4 6│3 2 3 7 2 2│
│8 8 0 5 5 8│6 7 2 6 7 1│7 1 0 1 6 1│8 5 4 8 1 6│
│1 5 1 6 3 5│0 2 7 3 2 4│8 2 2 7 2 0│6 0 5 4 3 6│
└───────────┴───────────┴───────────┴───────────┘

 disp 0.001 rnd z
┌───────────┬───────────┬───────────────────────────────────┐
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 1 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 1│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│1 1 0 0 0 1│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
├───────────┼───────────┼───────────────────────────────────┤
│0 0 0 0 1 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 1 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 1 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 1 0 0 1 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 1 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
├───────────┼───────────┼───────────────────────────────────┤
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 1 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│1 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
├───────────┼───────────┼───────────────────────────────────┤
│0 0 1 1 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│1 0 0 1 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
│0 0 0 0 0 0│0 0 0 0 0 0│0.033 0.033 0.033 0.033 0.033 0.033│
└───────────┴───────────┴───────────────────────────────────┘

The display of the result z shows 12 matrices, each of shape 5 by 6, arranged in a 4 by 3 grid. The first column of
matrices corresponds to variations for the max function. Ones in these matrices correspond to locations of the
largest value in each matrix in x. The second column is similar but for the min function. The last column corre-
sponds to variations for the mean function all of which have the same value, 1/30.

Page of 7 23

Tensor Contraction; Inner and Outer product

The APL inner product is equivalent to doing an outer product followed by a contraction (as is used in tensor
analysis) on the last axis of the left argument and the first axis of the right argument. In tensor notation this would
be written as AijBjk. A convenient way to do this is to use dyadic transpose to form a trace at the final axis and ap-
ply +/ to that last axis. For example:

 a←4 3⍴⍳12 ⋄ b←3 7⍴⍳21

 ⍴a+.×b

4 7

 a+.×b
 35 38 41 44 47 50 53
 98 110 122 134 146 158 170
161 182 203 224 245 266 287
224 254 284 314 344 374 404

 ⍴a∘.×b

4 3 3 7

 ⍴c←0 2 2 1⍉a∘.×b

4 7 3

 +/c
 35 38 41 44 47 50 53
 98 110 122 134 146 158 170
161 182 203 224 245 266 287
224 254 284 314 344 374 404

More general contractions are possible based on dyadic transpose. Iverson suggests an operator which has the
axes to be contracted specified in pairs. This is how this would work. Suppose we have a rank 6 array and we wish
to contract on axes 0 and 5 and then 1 and 3:

 a←3 5 2 5 4 3⍴3 1 4 1 5 9 2 Axes to be contracted are of same length.
 ⍴b←2 3 0 3 1 2⍉a First produce the double trace.
2 4 3 5

 +/+/b Then do the double sum.
61 50 55 59
44 61 50 55

An alternative way to do this which avoids the multiple reductions is as follows:

 {+/,⍵}⍤2⊢b
61 50 55 59
44 61 50 55

We can use this technique to define a general contraction function tc which contracts its left argument according
to pairs of axes specified in the right argument:

tc←{m←⍴⍴⍺ ⋄ p←0.5×n←⍴⍵ ⋄ q←m-n ⋄ r←⍳m ⋄ ((⊂r~⍵)⌷r)←⍳m-n ⋄ ((⊂⍵)⌷r)←2/q+⍳p

 {+/,⍵}⍤p⊢r⍉⍺}

Page of 8 23

Total Inner Product

Iverson introduces an operator which he names the total inner product. This is similar to the regular inner product
+.× but does more than one contraction. A slight paraphrase of his description goes like this:

“The inner product between M and N is equivalent to their outer product
followed by a contraction which pairs the last axis contributed by M with
the first axis contributed by N. If instead we contract by pairing the
last axis contributed by M with the last contributed by N, the penulti-
mate axes contributed by M and N, and so on over all possible pairs, the
overall process is called the total inner product.”

Iverson proposes an operator (plus-with-circle-overbar) with function arguments to produce M and N. With the ad-
vent of trains, it’s simpler just to have a function tip acting on M and N directly. If desired, M and N can be pro-
duced with a train such as (f tip g)x.

The rank of the result produced by tip is the difference of the ranks of the arguments. For example, if the left ar-
gument has shape 2 7 3 5 and the right argument shape 3 5, the total inner product will be of shape 2 7 with
values produced by multiplying matrices of shape 3 5 together and summing all their elements. Here’s an exam-
ple that produces the total inner product with a tensor contraction:

 a←2 7 3 5⍴⍳11 ⋄ b←3 5⍴⍳15

 ⍴a∘.×b

2 7 3 5 3 5

 (a∘.×b)tc 2 4 3 5
465 511 579 460 550 519 466
600 481 483 661 465 511 579

We could define tip in terms of tc but it’s simpler to employ the rank operator ⍤ as follows:

tip←{⍺ sop⍤((⍴⍴⍺)⌊⍴⍴⍵)⊢⍵}

 a tip b
465 511 579 460 550 519 466
600 481 483 661 465 511 579

tip is commutative and linear in its arguments but is not associative.

 a tip b ←→ b tip a
 a tip b+c ←→ (a tip b)+a tip c

So,

 a←4 3⍴⍳12 ⋄ b←4 3⍴3 1 4 1 ⋄ c←2 7 1 ⋄ d←8 2 8

 a b c d
┌───────┬─────┬─────┬─────┐
│0 1 2│3 1 4│2 7 1│8 2 8│
│3 4 5│1 3 1│ │ │
│6 7 8│4 1 3│ │ │
│9 10 11│1 4 1│ │ │
└───────┴─────┴─────┴─────┘

Page of 9 23

 a tip c

9 39 69 99

 (a tip c) ≡ c tip a

1

 (a tip c+d) ≡ (a tip c)+a tip d

1

 ((a+b) tip c) ≡ (a tip c)+b tip c

1

 ((5×a)tip c) ≡ 5×a tip c

1

Page of 10 23

The Derivative Rules

The rules for the derivatives of compound formulations (such as sum f+g and product f×g) are normally stated for
simple cases. Here’s an example, in both conventional and APL notation, of the product rule:

y = x2sin x y←(x*2)×1○x

dy/dx = x2 cos x + 2x sin x y ∆ x ←→ ((x*2)×2○x)+2×x×1○x

The variable x is a scalar and so is the result y. The derived function dy/dx takes a scalar as its argument and pro-
duces a scalar result.

Of course, we don’t have to look far to find something a little more complex. A common situation encountered is
where we have two functions of a vector of coordinates, both returning a scalar result. The coordinates might rep-
resent locations on a map. At every two dimensional point pt←x,y there might be values known for the population
density d and the energy consumption per person e. At every point we can then calculate the total energy con-
sumption as (d×e)pt. Perhaps we need to know the rate of change of total energy consumption across the map.
This is a vector with a value in both the x and y directions. For this case, the rule is:

 (d×e)∆ pt ←→ ((d×e ∆)+d ∆×e)pt

Iverson includes two tables of the common derivative rules, one for the case of vector functions and one for scalar
functions. These have been updated, extended somewhat and are explained in much greater detail in [5]. Here are
Iverson's tables with their translations to more modernAPL.

For scalar functions:

For vector functions:

Page of 11 23

Sum F+G∆ ←→ (F∆)+(G∆) (f+g)∆ ←→ f ∆+g ∆"
Product F×G∆ ←→ (F∆×G)+(G∆×F) (f×g)∆ ←→ (f ∆×g)+(g ∆×f)"
Composition F¨G∆ ←→ F∆¨G×(G∆) (f g)∆ ←→ (f ∆ g)×g ∆"
Inverse F⍣¯1∆ ←→ ÷¨(F∆¨(F⍣¯1)) f⍣¯1 ∆ ←→ ÷(f ∆ f⍣¯1)

¯ ¯
¯¯ ¯ ¯

¯

Sum F+G∆ ←→ (F∆)+(G∆)"
 F⊗G∆ ←→ F⊗(G∆)⊕(0 2 1 ⍉(F∆⊗G))
Product F×G∆ ←→ 0 0 1¨⍉¨(F⊗G∆)"
Composition F¨G∆ ←→ F∆¨G⊕(G∆)"
Inverse F⍣¯1∆ ←→ ÷¨(F∆¨(F⍣¯1))"
 F⊕G∆ ←→ F⊗G∆⊕0 1

¯

¯¯
¯

 (f+g)∆ ←→ f ∆+g ∆
(f∘.×g)∆ ←→ (f∘.×g ∆)+0 2 1⍉f ∆∘.×g
 (f×g)∆ ←→ 0 0 1⍉(f∘.×g)∆
 (f g)∆ ←→ (f ∆ g)+.×g ∆
 f⍣¯1 ∆ ←→ ⌹f ∆ f⍣¯1
(f+.×g)∆ ←→ 0 1 tc⍨(f∘.×g)∆

Symmetry and the Canonical Skew Cube

Iverson introduces symmetric and skew-symmetric arrays with definitions for a pair of axes:

“An array A is said to be symmetric in axes I and j if the result of in-
terchanging axes I and J equals A, and skew-symmetric in I and J if the
result equals -A. An array is said to be symmetric (skew-symmetric) if it
is symmetric (skew-symmetric) in all axis pairs.”

A helpful way to look at this in APL is to remember that the interchange of axes calls for a dyadic transpose. So, if
we start with an array a, the interchange of a pair of axes could produce a result which is unchanged, the negation
-a, or even something else. For example:

xchg←{t←⍳⍴⍴⍵ ⋄ i j←⍺ ⋄ (⍋⍋t+(i-j)×(t=j)-t=i)⍉⍵}

 ⍴1 2 xchg 2 3 4 5 6⍴3

2 4 3 5 6

sym←{⍵≡⍺ xchg ⍵} Symmetric with respect to axes ⍺
skew←{⍵≡-⍺ xchg ⍵} Skew with respect to axes ⍺

Iverson then looks at the results of transposition with permutation vectors:

“If A is symmetric and P is a permutation vector of shape ⍴⍴A, then P⍉A
equals A. If A is skew, then P⍉A equals A if the permutation is even
(i.e., the permutation is equivalent to an even number of pairwise trans-
positions) and -A if it is odd.”

And this leads to a definition for the sign of a vector:

“We now define the sign of a vector as 1 if the vector is an even permu-
tation, ¯1 if it is odd, and 0 if it is not a permutation.”

Iverson provides a function for the sign of a vector. It is written (as an ⍺ ⍵ direct definition) to accept a matrix as
an argument producing one element in the result for each row of the argument:

S:1:0≠D←¯1↑⍴⍵:(R<D)×(¯1*R×D-1)×S(0=⍳⍴⍴⍵)↓¯1+(R←+/∧\⍵≠0)⌽⍵

 S m←3 4⍴0 1 2 3,0 1 3 2,0 1 1 2

1 ¯1 0

As the sign is defined for a vector, it seems more natural to define a function of rank 1, which can then be applied
to arrays of any rank. So:

sign←{0=d←⍴⍵:1 ⋄ r←+/∧\⍵≠0 ⋄ ⍬⍴(r<d)×(¯1*r×d-1)×∇ ¯1+1↓r⌽⍵}⍤1

 sign m

1 ¯1 0

Next up for Iverson’s consideration is the canonical skew cube. This rather formidable sounding name is actually
not too difficult to understand. We start with a cube of order n. This is nothing more than a rank n array with all
dimensions being n. So an order 3 cube would be of shape 3 3 3 and an order 4 array would be of shape 4 4 4 4.

Page of 12 23

Skew cubes are cubes with elements whose position, expressed as an index, is used to calculate the sign for that
element. Skew cubes can be scalar multiples of one special skew cube – the canonical skew cube. The rank 2 ver-
sion of this is 2 2⍴0 1 ¯1 0. The first element of this array is at index 0,0. As this is not a permutation the skew
cube has a 0 in this position. The next element is at index 0,1 which is an even permutation producing a 1 for this
element. The third element has index 1,0 which is an odd permutation producing a ¯1. Lastly is an element at po-
sition 1,1 which gives a 0 as it is not a permutation.

Iverson’s direct definition for the canonical skew cube is:

CSC:S⍉D⊤⍉D⍴⍳×/D←N⍴N←⍴⍵

This takes a vector as an argument. The length of this vector is the order of the cube. This can be simplified a little
by using the sign function defined above:

csc←{sign↑⍳n⍴n←⍴⍵}

Using this definition, we have:

 csc 6 3

 0 1

¯1 0

 disp csc 3 4 5
┌──────┬──────┬──────┐
│0 0 0│0 0 ¯1│ 0 1 0│
│0 0 1│0 0 0│¯1 0 0│
│0 ¯1 0│1 0 0│ 0 0 0│
└──────┴──────┴──────┘

By examining the order 4 example below, we can see that the canonical skew cube is mainly zeros. 1s and ¯1s
appear in pairs, but only when their indices correspond to permutations.

 disp csc 1 9 4 9
┌────────┬────────┬────────┬────────┐
│0 0 0 0 │0 0 0 0│0 0 0 0│0 0 0 0│
│0 0 0 0 │0 0 0 0│0 0 0 ¯1│0 0 1 0│
│0 0 0 0 │0 0 0 1│0 0 0 0│0 ¯1 0 0│
│0 0 0 0 │0 0 ¯1 0│0 1 0 0│0 0 0 0│
├────────┼────────┼────────┼────────┤
│0 0 0 0│0 0 0 0 │ 0 0 0 1│0 0 ¯1 0│
│0 0 0 0│0 0 0 0 │ 0 0 0 0│0 0 0 0│
│0 0 0 ¯1│0 0 0 0 │ 0 0 0 0│1 0 0 0│
│0 0 1 0│0 0 0 0 │¯1 0 0 0│0 0 0 0│
├────────┼────────┼────────┼────────┤
│0 0 0 0│0 0 0 ¯1│0 0 0 0 │ 0 1 0 0│
│0 0 0 1│0 0 0 0│0 0 0 0 │¯1 0 0 0│
│0 0 0 0│0 0 0 0│0 0 0 0 │ 0 0 0 0│
│0 ¯1 0 0│1 0 0 0│0 0 0 0 │ 0 0 0 0│
├────────┼────────┼────────┼────────┤
│0 0 0 0│ 0 0 1 0│0 ¯1 0 0│0 0 0 0 │
│0 0 ¯1 0│ 0 0 0 0│1 0 0 0│0 0 0 0 │
│0 1 0 0│¯1 0 0 0│0 0 0 0│0 0 0 0 │
│0 0 0 0│ 0 0 0 0│0 0 0 0│0 0 0 0 │
└────────┴────────┴────────┴────────┘

The canonical skew cube (of order 4) is the εijkl pseudotensor used in tensor analysis. It is known by several names
and Wikipedia has a useful article [2] for the “Levi-Cevita symbol”.

Page of 13 23

Iverson defines the normal operator as:

“The total inner product of a function F with the canonical skew function
CSC is an operator on F which will be denoted by F⊕∘ and will be called
the normal operator.”

This can be defined in a straightforward manner, with a train:

norm←{(⍺⍺ tip csc)⍵}

Iverson continues (with tip in place of the untypable plus-circle-overbar character):

“If F is a vector function, then F⊕∘ is orthogonal (or normal) to F in
the sense that F⊕∘ tip F (or, equivalently F⊕∘+.×F) is zero.  
 
More generally, if F and G are vector functions, then both are orthogonal
to the normal of their outer product, that is, to F⊗G⊕∘.”

We can test this with:

 f←{⍵*2}⍤1

 g←{1○⍵*÷3}⍤1

 (f norm tip f)x←1 9 4 9
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (f norm +.× f)x
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (f tip (f∘.×g)norm)x

0 ¯1.13687E¯13 0 2.27374E¯13 Pretty close to zero.
 (g tip (f∘.×g)norm)x

0 ¯1.06581E¯14 0 1.42109E¯14 ditto.

Page of 14 23

Mathematical Physics

Iverson deals briefly with six common differential forms used in mathematical physics. He defines these for the
most common case: the field is a function of a vector position. (F01 indicates a rank 0 1 function. F11 indicates a
rank 1 1 function.) These are in the following table, which has an extra column for the APL dfn equivalents:

 Resulting  
 Function Rank dfn equivalent  

Gradient F01∆ 1 1 {⍺⍺ ∆ ⍵}  
Matrix of partials F11∆ 2 1 {⍺⍺ ∆ ⍵}  
Jacobian -.×¨(F11∆) 0 1 {det ⍺⍺ ∆ ⍵}  
Divergence F11∆⊕0 1 0 1 {(⍺⍺ ∆ ⍵)tc 0 1} 
Laplacian F01∆∆⊕0 1 0 1 {(⍺⍺ ∆ ∆ ⍵)tc 0 1} 
Curl -¨F11∆⊕∘ 1 1 {-⍺⍺ ∆ norm ⍵}

Determinant
Iverson uses monadic -.× for the determinant function. Unfortunately, this is not (yet) defined in Dyalog APL. In
its place we’ll use the following definition (copied from the dfns workspace supplied with Dyalog APL):

det←{⍺←1

 0=n←≢⍵:⍺

 i j←(⍴⍵)⊤{⍵⍳⌈/⍵}|,⍵ ⋄ k←⍳n

 (⍺×⍵[i;j]×¯1*i+j)∇ ⍵[k~i;k~j]-⍵[k~i;j]∘.×⍵[i;k~j]÷⍵[i;j]}

Gradient
Let’s start out with electrostatics. According to Maxwell’s laws, the electric field at a point in three dimensional
space is the gradient of the electric potential at that point:

E = -grad φ

Although this might look like the application of a function to a value, it is not. φ is a function of position, return-
ing a scalar at each point. Iverson describes this as a rank 0 1 function: i.e. a function of a vector argument pro-
ducing a scalar result. And grad is an operator, not a function. It produces a derived function with rank 1 1. The
derived function takes a vector as an argument and produces a vector as a result. In APL terms, this is:

 phi←{⍬⍴ … }⍤1 A scalar function of vector coordinates
grad←{⍺⍺ ∆ ⍵}

 e←-phi grad e is a vector function

The electric field is now seen as a function of position. Every physicist knew that all along but now it’s clearly
stated. Here’s an example:

 phi←{÷(⍵+.×⍵)*0.5}⍤1 The field of a unit point charge
 e←-phi grad

 e 2 3 4

0.0128066 0.01920990.0256131

Page of 15 23

Matrix of partial derivatives
The matrix of partial derivatives is usually defined for a rank 1 function with a vector data argument. This pro-
duces a rank 2 result which is expected to be square. In these circumstances, the matrix of partials is just the result
produced by the application of the gradient.

mop←{⍺⍺ ∆ ⍵}

For example, for a function f of a vector argument with elements x0, x1, x2 and x3, producing a result with elements
f0, f1, f2 and f3 the matrix of partials would be of shape 4 by 4:

∂f0/∂x0 ∂f0/∂x1 ∂f0/∂x2 ∂f0/∂x3

∂f1/∂x0 ∂f1/∂x1 ∂f1/∂x2 ∂f1/∂x3

∂f2/∂x0 ∂f2/∂x1 ∂f2/∂x2 ∂f2/∂x3

∂f3/∂x0 ∂f3/∂x1 ∂f3/∂x2 ∂f3/∂x3

Jacobian
The Jacobian is just the determinant of the matrix of partial derivatives:

J←{det ⍺⍺ mop ⍵}

Here’s an example:

 f←{x y←⍵ ⋄ (y×x*2),(5×x)+1○y}⍤1

The argument to this vector function is expected to be of length 2. The matrix of partials is of shape 2 2 with ele-
ments corresponding to:

 y×2×x x*2

 5 2○y

The Jacobian, determined exactly, is then (y×2×x×2○y)-5×x*2. Evaluating this at the point 2 3, we get a matrix
of partials:

 12 4

 5 ¯0.989992

and a determinant of ¯31.8799.

For comparison, the equivalent values for the matrix of partials and the Jacobian using the ∆ operator are:

 f mop 2 3

12 4

 5 ¯0.989993

 f J 2 3

¯31.8799

Note that this Jacobian operator works with functions of vectors of any length. Jacobians come up often in the
calculations for the transformations from one coordinate system to another – and this could easily be in four di-
mensions, as is required in special and general relativity.

Page of 16 23

Divergence
The divergence is an operator applied to a vector function. It produces a derived function of rank 1 which gener-
ates a scalar result. For example, the function might be the electric field at every point in three dimensional space.
The divergence of that field at a point is related to the charge density (a scalar value) by:

div E = 4πρ

Referring to the matrix of partials in traditional notation example above, the divergence is:

 ∂f0/∂x0 + ∂f1/∂x1 + ∂f2/∂x2 + ∂f3/∂x3

The corresponding APL definition of the divergence is then div←{+/0 0⍉⍺⍺ mop ⍵} or equivalently

div←{(⍺⍺ ∆ ⍵)tc 0 1}

Continuing with the example of the electric field of a unit charge, we have:

 phi←{÷(⍵+.×⍵)*0.5}⍤1

 e←-phi grad

 e div 2 3 4

¯0.0000149545

Warning: An often encountered definition of the divergence is:

div F = ∇・F = (∂/∂x, ∂/∂y, ∂/∂z)・(Fx, Fy, Fz) = ∂Fx/∂x+∂Fy/∂y+∂Fz/∂z

Wikipedia has the following to say about this notation:

“The common notation for the divergence ∇· F is a convenient mnemonic, where the dot denotes an operation
reminiscent of the dot product: take the components of the ∇ operator (see del), apply them to the corresponding
components of F, and sum the results. Because applying an operator is different from multiplying the components,
this is considered an abuse of notation."

So don’t bother trying to find ∇ or this sort of dot operator in APL.

Laplacian
The Laplacian of a scalar field φ, a function of coordinates x, y and z can be written as:

∇2 φ = ∂2φ/∂x2 + ∂2φ/∂y2 + ∂2φ/∂z2

and can be defined as the divergence of the gradient of the field φ:

∇2 φ = div grad φ

Written in standard notation, this has the order of execution for operators as right to left, just the same as for func-
tions. APL insists on a distinction and the definition of the Laplacian then is either {⍺⍺ ∆ div ⍵} or equivalently:

L←{⍺⍺ grad div ⍵} ⍺⍺ is the scalar field function;
⍵ is the point

For the electric field we used earlier, we have:

 phi←{÷(⍵+.×⍵)*0.5}⍤1

 phi L 2 3 4 Result is a scalar
0.0000149545

Page of 17 23

https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Abuse_of_notation

Curl
A fairly straightforward definition of the curl operator is given in Einstein tensor notation (e.g. Synge & Child, [1]
p. 135). If f is a vector field in 3 dimensions (i.e. a rank 1 1 function), then:

(curl f)i = εijk ∂fj /∂xk

This calls for the formation of the matrix of partial derivatives (i.e. all the combinations of the derivative of fj with
respect to xk), its outer product with the canonical skew cube of order 3 and the contraction of the result on axis
pairs j and k. This goes over into APL directly as:

curl←{-⍺⍺ ∆ norm ⍵}

Note that as the APL definition does not make use of indices, curl requires no modification to be used in four or
more dimensions.

Here’s an example which appears in the Wikipedia article on curl [3]. Consider a three dimensional vector field:

 f←{x y z←⍵ ⋄ y,(-x),0} Field f at a point x,y,z

As the z value is unused in the definition of f, this field is cylindrical: at each point there is a 3-vector oriented at
right angles to a line joining the point to the z axis perpendicularly. The magnitude of this vector is proportional to
the point’s distance from the z axis. Here’s a graph of the field in the x-y plane.

.

Figure A

Using the component expression for curl in standard notation we get:
curl f = (0, 0, ∂f 0/∂x1 - ∂f 1/∂x0)

= (0, 0, -2)

This value is constant throughout the whole vector field. The value given by curl at a representative point is:

 f curl 1 1 1

0 0 ¯2

Page of 18 23

The Predator & Prey Problem

An interesting example of a vector field is the predator-prey problem (Wikipedia [4]). This has two coupled non-
linear differential equations describing the dynamics of the populations of predators and prey. Typical situations
involve foxes and rabbits or cheetahs and baboons. The equations take this form:

dx/dt = ax - bxy
dy/dt = cxy - dy

where x is the population of prey, y is the population of predators and a, b, c and d are constants.

The prey survive by reproducing well. With an abundant supply of food and no predators, their population prey
grows exponentially. Assume they have a constant growth rate a, meaning that in a small time interval, their popu-
lation grows by a number a×prey. However, there are predators around and a number of prey will be eaten. We’d
expect the number lost to be proportional to the populations of both predators and prey, i.e. b×predator×prey. Of
course, some prey will die through old age but this is accounted for using a smaller value for the parameter a.
Predators face their own challenges. Their reproduction is tied to their population and to the supply of prey:
c×predator×prey. They have no predators but die either from starvation or old age: d×predator.

For example:

 a b c d←2 4 3 3÷3

At any point in time, the two populations are changing. If we draw a graph with axes of prey population and
predator population, there is a two element vector associated with each point which has elements of the time rate
of change of the two populations. That’s a vector field imposed on the state diagram. Here is a rough picture of
this field:

Figure B

Page of 19 23

0

0.5

1.0

Predator

Prey

0 0.5 1.0 1.5 2.0 2.5

1.5

We can express the time derivative of the two populations as a two element vector:

 growth←{prey predator←⍵ ⋄ ((a×prey)-b×prey×predator),(c×prey×predator)-d×predator}

» growth←{prey predator←⍵ ⋄ (prey,predator)×(a,-d)-(b,-c)×predator,prey}

And if we choose our parameters in pairs:

 p←a,-d ⋄ q←b,-c

 growth←{⍵×p-q×⌽⍵}

The Wikipedia article explains that these growth vectors form closed loops.

Figure C

In order to see this numerically, we need to select a starting point, calculate the growth vector, move to the new
point and repeat until we get back to the beginning. Here’s a function to do this:

repeat←{⍺=0:⍵ ⋄ {⍵⍪{⍵+0.01×growth ⍵},¯1 2↑⍵}(⍺-1)∇ ⍵}

So, if we pick a starting point of 1 0.9, we can see the first few moves:

 5 repeat 1 2⍴1 0.9
1 0.9
0.994667 0.9
0.989362 0.899952
0.984086 0.899856
0.978839 0.899713
0.973623 0.899523

Our starting point is at the top of a loop and we’re moving due West. We can explore the entire loop with more
iterations and pick out the other extreme points:

 ⍴loop←1000 repeat 1 2⍴1 0.9

1001 2

Page of 20 23

0

0.5

1.0

Predator

Prey

0 0.5 1.0 1.5 2.0 2.5

1.5

Steady	
State

 {(⊂⍵+⍳10)⌷loop}¨186 436 638 The left, bottom and right edges
┌─────────────────┬─────────────────┬────────────────┐
│0.55571 0.509689│0.983757 0.238443│1.64358 0.487316│
│0.555638 0.507424│0.987188 0.238405│1.64386 0.490453│
│0.555583 0.505169│0.990631 0.238374│1.64407 0.49361 │
│0.555545 0.502924│0.994087 0.238352│1.64421 0.49679 │
│0.555523 0.500689│0.997555 0.238338│1.64428 0.49999 │
│0.555518 0.498464│1.00104 0.238332│1.64428 0.503211│
│0.555529 0.496248│1.00453 0.238334│1.64421 0.506453│
│0.555557 0.494042│1.00803 0.238345│1.64406 0.509716│
│0.555601 0.491847│1.01155 0.238364│1.64385 0.512999│
│0.555662 0.489661│1.01508 0.238392│1.64357 0.516302│
└─────────────────┴─────────────────┴────────────────┘

If we follow the loop further we can return to the top which is pretty close to the starting point:

 {(⊂⍵+⍳10)⌷loop}¨788
┌─────────────────┐
│1.02484 0.912039│
│1.01921 0.912266│
│1.01361 0.912441│
│1.00803 0.912565│
│1.00249 0.912639│
│0.996971 0.912661│
│0.991486 0.912634│
│0.986031 0.912556│
│0.980607 0.912429│
│0.975215 0.912252│
└─────────────────┘

The growth diagram in Figure B suggests that there is an equilibrium point pt at which the growth vector is 0 0.
It’s not difficult to see this from the definition of the growth function: {⍵×p-q×⌽⍵}. In fact, there are two possibili-
ties. One is when both populations are zero; the other is when p=q×⌽pt or pt←⌽p÷q.

 ⌽p÷q

1 0.5

 growth⍤1⊢2 2⍴ 0 0,⌽p÷q

0 0

0 0

Intuitively we can guess from the growth diagram in Figure B that this vector field has both divergence and curl.
Let’s evaluate the divergence for a grid of suitable points:

 h←0.4+0.2×⍳9

 grid←h∘.,0.5×h

 1⍕{growth div ⍵}¨grid
 ¯0.2 ¯0.3 ¯0.5 ¯0.6 ¯0.7 ¯0.9 ¯1.0 ¯1.1 ¯1.3
 0.0 ¯0.1 ¯0.3 ¯0.4 ¯0.5 ¯0.7 ¯0.8 ¯0.9 ¯1.1
 0.2 0.1 ¯0.1 ¯0.2 ¯0.3 ¯0.5 ¯0.6 ¯0.7 ¯0.9
 0.4 0.3 0.1 0.0 ¯0.1 ¯0.3 ¯0.4 ¯0.5 ¯0.7
 0.6 0.5 0.3 0.2 0.1 ¯0.1 ¯0.2 ¯0.3 ¯0.5
 0.8 0.7 0.5 0.4 0.3 0.1 0.0 ¯0.1 ¯0.3
 1.0 0.9 0.7 0.6 0.5 0.3 0.2 0.1 ¯0.1
 1.2 1.1 0.9 0.8 0.7 0.5 0.4 0.3 0.1
 1.4 1.3 1.1 1.0 0.9 0.7 0.6 0.5 0.3

This reveals a pattern. The values of smaller magnitude lie along the principal diagonal and represent something
like laminar flow at those points. The values of larger magnitude are on the opposite diagonal (divergent if posi-
tive and convergent if negative):

Page of 21 23

 1⍕{growth div ⍵}¨0 0⍉grid

 ¯0.2 ¯0.1 ¯0.1 0.0 0.1 0.1 0.2 0.3 0.3

 1⍕{growth div ⍵}¨0 0⍉⌽grid

¯1.3 ¯0.9 ¯0.6 ¯0.3 0.1 0.4 0.7 1.1 1.4

The curl of this field demonstrates a different pattern:

 1⍕{growth curl ⍵}¨grid
 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1
 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4
 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7

It appears that there is a circulation at every point but it is most pronounced for larger values of the populations.

Conclusion

Ken Iverson’s description of the derivative operator and some of its uses is a model of clarity. Bringing the nota-
tion up to date has been straightforward.

Iverson's paper was written before the concept of trains was clearly understood. This has meant that in a few
places (e.g. tip and tc) he resorted to an operator where today he could just as effectively have used a function.

Although this paper makes use of function rank throughout, there is no mention of the rank operator ⍤ or the con-
cepts of cell and frame in [0]. These parts of the language saw the light of day a little later. If they had been avail-
able, the text could have more easily dealt with argument values which produce frames.

Page of 22 23

References

[0] “The Derivative Operator” K.E. Iverson, Proceedings of APL79: ACM 0-89791-005-2/79/0500-0347.

[1] “Tensor Calculus” J.L. Synge & A. Schild, Dover Publications 1949.

[2] https://en.wikipedia.org/wiki/Levi-Civita_symbol

[3] https://en.wikipedia.org/wiki/Curl_(mathematics)

[4] https://en.wikipedia.org/wiki/Lotka–Volterra_equations

[5] "The Derivative Rules", M. Powell, https://aplwiki.com/images/f/f8/2_The_Derivative_Rules.pdf

[6] "Calculus" K.E. Iverson, https://www.jsoftware.com/books/pdf/calculus.pdf

Mike Powell, mdpowell@gmail.com
April 2020

Page of 23 23

https://en.wikipedia.org/wiki/Levi-Civita_symbol
https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://aplwiki.com/images/f/f8/2_The_Derivative_Rules.pdf
https://www.jsoftware.com/books/pdf/calculus.pdf
mailto:mdpowell@gmail.com

	Introduction
	The APL environment
	Supporting operators and functions
	Function rank
	The Derivative Operator
	The shape of the result
	Iverson's definition
	An operator for the derivative

	Tensor Contraction; Inner and Outer product
	Total Inner Product
	The Derivative Rules
	Symmetry and the Canonical Skew Cube
	Mathematical Physics
	Determinant
	Gradient
	Matrix of partial derivatives
	Jacobian
	Divergence
	Laplacian
	Curl

	The Predator & Prey Problem
	Conclusion
	References

