
Tensors in APL 
A Notebook

Introduction

Somewhere along the way, I heard Ken Iverson, in a discussion about APL, respond to the question: "So, what
about tensors?" He had no hesitation. I think he said "What do you mean? It's all there." I sensed that he meant
what he was saying. Needless to say, no one challenged him.

I studied tensor analysis at university and certainly enjoyed the topic, largely for the slick way the notation
worked. But, of course, an undergraduate course is carefully crafted to steer clear of the more difficult bits.

A little later, I learned APL and had the same reaction: what a wonderful notation. Over the years, I've used APL
to do a lot of satisfying work. But, always lingering there was the topic of tensors. I never saw anyone follow up
on Ken's comment, so I decided, in my retirement, to take it on. This has not been straightforward. I've had at
least a couple of false starts on this in the past ten years. But now I believe I have something that's presentable. I
only wish I could get Ken's reaction.

In his paper from 1979 "The Derivative Operator", Ken referred to a text by S. Sokolnikoff "Tensor Analysis,
Theory and Applications". This is a truly remarkable book for an APL enthusiast. It contains many of the ideas
that form APL's foundation. I've drawn on this for a good deal of the material that follows.

But, I would be remiss if I did not also acknowledge Paul Dirac's "General Theory of Relativity". Dirac had an
amazing talent to make the complex simple. His book is just 69 pages.

So, this is just an introduction to a large and important topic. I had to pick a point to stop and I chose the covariant
derivative. Along the way, I tried to be rigorous, but I'm not a mathematician, so I'm open to challenge.

Mike Powell 
mdpowell@gmail.com 
July 2024

The APL environment

All of the text in the APL385 Unicode font is executable in APL. The particular APL used here is Dyalog APL
18.2 with:

	 ⎕io←0 
	 ⎕pp←6 
]boxing on

Dyalog APL is freely available for non-commercial use at www.dyalog.com.

Rank

Nowadays, the rank of a monadic function is defined as a single number, the argument rank. This is the rank of
the array of greatest rank that does not produce a frame. However Iverson chose to prefix this value with the rank
of the result so produced. In what follows, this will be helpful, so we will adopt Iverson's two integer definition of
function rank: we will assume that a reference to "rank m n" refers to an argument rank of n producing a result
rank of m. In what follows, we are almost always dealing with arguments that are vectors. So if we refer to "rank
m", we really mean "rank m,1". 

Page of 1 50

mailto:mdpowell@gmail.com
http://www.dyalog.com

Some useful definitions

Utility functions

First, we have functions that don't do a lot more than give familiar names to APL functions:

	 min←{⌊/,⍵}	 Minimum 
	 max←{⌊/,⍵}	 Maximum 
	 num←{×/⍴⍵}	 Number 
	 sum←{+/,⍵}	 Sum 
	 mean←{(sum÷num)⍵}	 Mean 
	 sop←{+/,⍺×⍵}	 Sum of product 
	 ssq←{⍵+.×⍵}	 Sum of squares 
	 rnd←{⍺×⌊0.5+⍵÷⍺}	 Round 
	 disp←{⊂⍤2⊢⍵}	 Display higher rank array 
	 hyp←{0.5*⍨ssq ⍵}	 Hypotenuse 
	 sin←{1∘○⍵}	 Sine 
	 cos←{2∘○⍵}	 Cosine 
	 tan←{3∘○⍵}	 Tangent 

atan←{¯3∘○⍵}	 Arc tangent 
	 id←{(⍳⍵)∘.=⍳⍵}	 Identity function 

lm←{(⍳⍴⍵)∘.≥⍳⍴⍵}	 Lower mid array 
	 alt←{⍵×(⍴⍵)⍴1 ¯1}	 Alternate 

sh←{(⍺⌽⍳⍴⍴⍵)⍉⍵}	 Shift axes 
xp←{⍺×⍤(-(⍴⍴⍺)⌊⍴⍴⍵)⊢⍵} Extended product

As derivatives play such a large part in what follows, it's useful to include the derivatives of two of the trigono-
metric functions:

	 dhyp←{⍵÷hyp ⍵}	 Derivative of hyp 
	 datan←{÷1+⍵×⍵}	 Derivative of atan

Then we have two operators, defined by Iverson in his paper on derivatives. These will see a lot of action:

	 ip←{(⍺⍺ ⍵)+.×⍵⍵ ⍵}	 Inner product operator 
	 op←{(⍺⍺ ⍵)∘.×⍵⍵ ⍵}	 Outer product operator

Comparing arrays

In order to check our work in the examples, we will need to deal with comparing arrays of numbers which are
almost the same. We'll define a function comp that returns a scalar measure of how close two arrays are.

	 comp←{ 
	 (⍴⍴⍺)≢⍴⍴⍵:0 
	 (⍴⍺)≢⍴⍵:0 
	 a b←,¨⍺ ⍵ 
	 mean 0=0.99 1.01⍸a÷b+2×a×b=0}

This works well most of the time. However, it does not do so well if our arrays have elements which are both 0 or
that should be zero but instead are just very small (due to numerical error). In those cases, comp will have to be
replaced with something like comp⍥{0.000001⌈⍵} or comp⍥{0.01 rnd 1000000×⍵}.

Page of 2 50

Spaces & Fields

The Windy website

Here's an image from the windy.com website, showing what's happening with the wind in early 2023 at the sur-
face in the Pacific Northwest. Most of the wind activity is over the ocean with just light breezes inland.

Figure 1, the windy.com website

As wind velocity is a vector, this map shows both the wind's direction and magnitude as arrows. Obviously if this
was done at every observation point the arrows would overlap and obscure each other. So the website rather
craftily shows samplings of the data. At any one moment, only a small amount of the available data is displayed.
These arrows then fade away to be replaced by a new sample. Doing it this way produces a nice impression of
wind movement. The background colouring just shows the surface temperature in degrees Celsius.

So this map is actually showing two values at each point, one of which is a vector and the other a scalar. These are
both fields.

windy.com provides two other controls which allow the observer to delve into a full four dimensional space. One
controls altitude and the other time. The altitude slider lets us move up through the atmosphere and look at the
wind field all the way from the surface up to 13.5 km. The time slider lets us look ahead up to 10 days in advance:

Taken together these maps give sailors an idea of wind strength and direction today and tomorrow. As boats sail
basically in two dimensions (plus time), the altitude component of wind is not so important. That's impressive.
Let's analyze what's going on a bit more closely.

The space we're presented with appears to be rectangular with four dimensions x, y, z and t. The two dimensional
map we can look at uses the longitude and latitude as the x and y axes. The z axis corresponds to altitude and t is
the time axis. Note however that, as the Earth is approximately a sphere, our x and y coordinates are really the
projections of latitude and longitude values onto a plane.

Page of 3 50

http://windy.com
http://windy.com

Spaces and Fields

In a space of N dimensions, a point is represented as a vector of length N. For example, a random point could be
produced with:

	 point←?N⍴1000

If we are interested in a collection of M random points, we can get them with:

	 collection←?(M,N)⍴1000

We can create a collection of points which are continuously connected with a generating function. This is known
as a curve. Such a curve has an infinite number of points and is produced by applying the generating function to
successive values of a parameter u as it varies through a range of values. Each application of the function is to a
scalar and it produces a single point in N-space. For example, in two dimensions we can create a curve with the
function {⍵*1 2}. We are unable to deal with infinities in APL, but we can show some of the points on the curve:

	 start←1 ⋄ mid←5 ⋄ end←9 
	 curve←{⍵*1 2} 
	 curve⍤0⊢start,mid,end 
1 1 
5 25 
9 81

In spaces of higher dimension, we can generate other collections of points. We do this by using generating func-
tions which take vectors of several u parameters as their arguments. These collections of points are known as sub-
spaces of the N dimensional space. In a space of N dimensions, we can produce subspaces of dimension 1 to N-1.
In particular, if the dimension of the subspace is N-1, the collection of points is known as a hypersurface of the N
dimensional space.

In anticipation of discussions regarding relativity, we'll sometimes use the term frame to mean a space of four di-
mensions with components x, y, z and t.

Making a measurement

When an observer takes a measurement, this happens by applying a (usually monadic) function to the coordinates
of a point. The result obtained is a regular APL array, maybe a scalar, vector, matrix or of higher rank. When we
collect together all the results obtained by the measurement function at each point in the coordinate space, that's a
field. Then it makes sense to talk about a scalar field, a vector field etc.

Page of 4 50

The Sphere

A good example of a space and a subspace is to be found with a sphere. Here's one of 3 dimensions:

The coordinates x, y and z define a 3 dimensional space of rectangular coordinates. We assume that x, y and z are
real numbers and extend continuously throughout some domain, which might be infinite.

A sphere is a subspace of that with coordinates r, θ and ψ. As a sphere is a solid, the test for whether points are
part of that solid is given by r2 ≥ x2 + y2 + z2. Our APL definition of this is:

	 sphere←{⍺≥⍥ssq ⍵}	 Contents of a sphere

	 13 sphere 3 4 5 Is the point 3 4 5 within a sphere of radius 13? 
1

The surface of a sphere is another subspace of the Cartesian space. The points that make up this collection are de-
fined by r2 = x2 + y2 + z2 with a function surface:

	 surface←{⍺=⍥ssq ⍵} Surface of a sphere

	 13 surface 3 4 5 Is the point 3 4 5 on the surface? 
0 
	 13 surface 3 4 12	 3 4 12 is on the surface. 
1

On the surface of a sphere, we can identify a local frame of coordinates at any point. These are shown in red in the
diagram and represent the directions of increasing r, θ and ψ. On the sphere, the r axis is normal to the surface
and the θ and ψ axes are tangential to the surface.

Page of 5 50

r

θ

ψ

x

y

z

P←x,y,z

Q←sph P

Spherical coordinates

We can transform back and forth between the spatial components of rectangular and spherical coordinates with:

	 sph←{x y z←⍵	 Rectangular to spherical 
	 (hyp ⍵),atan((hyp x,y)÷z),y÷x}

And we can go in the reverse direction with:

	 sphi←{r theta psi←⍵	 Spherical to Rectangular 
	 r×((sin theta)×(cos,sin)psi),cos theta}

For example:

	 ⊣xyz←sphi 3.60746 1.52521 3.10805 
5 0.9 0.4 
	 sph xyz 
3.60746 1.52521 3.10805

Cylindical coordinates

Perhaps, if we're studying the mechanics of a fluid in a pipe, we might choose cylindrical coordinates.

Figure 3, Cylindrical cooordinates

And we can switch back and forth with:

	 cyl←{x y z←⍵	 Rectangular to cylindrical 
	 (hyp x,y),(atan y÷x),z}

	 cyli←{r theta z←⍵ 	 Rectangular to Cartesian 
	 (r×(cos,sin)theta),z}

The twisted space

Just in case it's needed below, here's one more space formed by a transformation function whose metric is not di-
agonal.

	 tw←{(+\⍵)*2}	 Twisted 
	 twi←{t←⍵*0.5 ⋄ t-¯1↓0,t}	 Its inverse

Page of 6 50

x

y

z

(r,θ,z)
θ r

Analytic derivatives

It will be useful later on to have analytic expressions for the derivatives of sph, sphi, cyl , cyli, tw and twi.
These are:

	 dsph←{x y z←⍵ ⋄ z←÷z ⋄ h←hyp x,y 	 Derivatives of sph and sphi 
	 r←dhyp ⍵ 
	 r,←(z×(datan z×h)×(dhyp x,y),-z×h) 
	 3 3⍴r,(datan y÷x)×(-y÷x×x),(÷x),0} 
	 dsphi←{r theta psi←⍵ 
	 a b←(sin,cos)theta ⋄ c d←(sin,cos)psi 
	 3 3⍴(a×d),(r×b×d),(-r×a×c),(a×c),(r×b×c),(r×a×d),b,(-r×a),0}

	 dcyl←{x y z←⍵ ⋄ t←y÷x 	 Derivatives of cyl and cyli 
	 3 3⍴(3↑dhyp 2↑⍵),(3↑(datan t)×((-t),1)÷x),0 0 1} 
	 dcyli←{r theta z←⍵ ⋄ a b←(cos,sin)theta 
	 3 3⍴a,(-r×b),0,b,(r×a),0 0 0 1}

	 dtw←{2×(lm ⍵)×⍉(2⍴⍴⍵)⍴+\⍵} 	 Derivatives of tw and twi. 
	 dtwi←{t←(2⍴⍴⍵)⍴0 ⋄ (0 0⍉t)←0.5×⍵*-0.5 ⋄ t-¯1 0↓0⍪t}

Conventions

To simplify matters, we'll adopt some conventions. We'll assume that:

P is a point in a space represented by a vector of rectangular coordinates. This point will be labelled Q in a second
frame. The coordinates Q will be derived from P via a transform function trf. Alternatively, P can be derived from
Q via the inverse trfi. (Of course, in order for this to work, trf must be invertible.)

	 P←3 1 4 2 
	 trf←{⍵*2} ⋄ trfi←{⍵*0.5} 
	 Q←trf P 
	 P≡trfi trf P 
1

Page of 7 50

P

Q
trf

trfi

Tensors

What is a tensor?

A tensor is a field of values produced by the application of a measurement function to each point in a coordinate
space. In APL terms, the result produced by the measurement function at a point is a simple (i.e. non-boxed) array.

However, tensors are a bit more than merely a field of APL arrays. Whether the measurement function represents
a tensor depends on the law of transformation of that function from one coordinate system to another. More on
that shortly.

Because of lot of scientific analysis focuses on relationships at a single point, it has been customary to refer to a
tensor as a data value rather than as the function which produced it. Which is unfortunate.

Why are tensors important?

Tensors, by design, transform in predictable ways. The outcome of this is that if we can write a physical law as an
equation whose terms are tensors and it is found to be true in one coordinate frame, then it is guaranteed to be true
in all coordinate frames.

This is very appealing to scientists. What's the point of having a physical law if you have to restate it in a different
form for every different observer? Of course, the classic example of this is Einstein's work on General Relativity,
which was only possible with tensors. Sokolnikoff puts it this way:

"Since tensor analysis deals with enitities and properties that are independent of the choice of
reference frames it forms an ideal tool for the study of natural laws. Indeed, whether a logical
deduction based on a conglomerate of observational facts deserves the name of a natural law is
often determined by the generality of such a deduction, and by its validity in a sufficiently wide
class of reference systems."

Einstein notation

The notation for tensor objects, adopted by Einstein and many others, employs indices, both as superscripts and
subscripts. The rank of an object is equal to the number of indices. So:

φ is a scalar 
xr , xs are vectors 
ars is a matrix 
... 
mpqrs is a rank 4 array

A similar notation is used for functions. For example f r is a function that returns a vector as its result.

The use of superscripts and subscripts is most important. As will be seen shortly, the placement of an index de-
termines how values change under coordinate transformations. A subscripted index is known as a covariant index;
a superscripted index as a contravariant index. Objects that have both types of index are known as mixed.

Page of 8 50

The positioning of the indices is also important and spacing needs to be inserted during typesetting to correctly
locate the indices. Text that contains a superscript index directly above a subscript index is ambiguous as the order
of the indices is unclear. Here's an example of a rank 5 array with properly spaced indices.

Einstein notation is both declarative and functional. It is declarative because it tells us the rank of an object and
the variance quality of each dimension. And it is functional because it prescribes functions that should be applied
to that tensor object. There are three functions to consider:

(a) Outer product 
If two tensors are written without an intervening function, an outer product is assumed. Thus yrzs is equiva-
lent to y∘.×z.

(b) Transposition 
If a tensor is written with some of its indices in an order that is not ascending, this indicates that a transpose
is to be applied to return the indices to their natural order. For example, Aijlmk implies a transpose of the last
three axes of a tensor, Aijklm.

(c) Contraction 
The summation convention means, when an index is repeated in a term, a summation with respect to that
index is understood. This is known as contraction and applies to one superscript and one subscript. For ex-
ample, mrsvs is equivalent to m+.×v. But note that msrvs specifies a slightly different product, v+.×⍉m.

APL operations with tensors

As tensors are just APL arrays, together with information about how they transform, we can use all of APL's func-
tions and operators in expressions to manipulate them. For example, ps+qs, Mij×Nij and eφ are all valid tensor ex-
pressions in Einstein notation and they have APL counterparts p+q, M×N and *phi. All the arithmetic and structural
functions are available. We can reshape tensors, take pieces of them, join them together or apply a reduction or
scan function.

Note, however, that Einstein notation is less expressive than APL and many operations that can be expressed in
APL have no counterpart in Einstein notation. For example, 0 1 1⍉M produces the trace of the second and third
axes of an array M, reducing the rank by 1. About the closest you can get with Einstein notation is the contraction
Mij j , but this does a summation of the trace and reduces the rank by 2.

Tensor value

Let's define a function to emulate conventional index notation. We'll assume that its right argument is an array and
that any outer products used in its construction have been performed. The function we define will need to handle
both contractions and transposes. The left argument will be a vector of indices which specify the operations to be
done in the same way as Einstein notation. Let's name the function val.

For example, in order to produce the contraction specified as Mijik, we would use a left argument to val of 'ijik'.
If we just wanted to produce a transpose of a rank 3 array specified as Mkij, we would use a left argument of
'kij'. And, performing two contractions together with a transpose could be done with 'ijlmkji'.

Page of 9 50

A
spacing

. . . . Covariant indices

. . . . Contravariant indices

i
 j k m

l

Here's a definition for val:

	 paired←{⍵{⍺∊(2=+/⍵∘.=⍺)/⍵}∪⍵} 	 Paired indices?

	 dense←{({⍵[⍋⍵]}∪⍵)⍳⍵} 	 Dense integers

	 val←{	 Tensor Value 
	 b←paired ⍺ ⋄ c←~b	 Find the indices that represent contractions. 
	 x←⍳⍴⍺ ⋄ s←b/⍺ 

 x[(⍸c),⍸b]←(dense c/⍺),(+/c)+(∪s)⍳s	 Calculate the indices to be used in the result. 
	 +/,⍤(0.5×⍴s)⊢x⍉⍵}	 Transpose the argument and sum the final axes.

val takes a left argument of a vector of indices and performs the contractions implied in the indices; along the
way it also performs any transposes specified by the non-contracting indices.

Note that the indices we choose do not have to form a sequence or they can be Greek letters or even numbers:

	 a←?4 3 2 5 3 4⍴100 
	 t←'ijklji'val a 
	 t≡'acdgca'val a 
1 
	 t≡'⍺∊⍴⍵∊⍺'val a 
1 
	 t≡4 7 2 5 7 4 val a 
1

The indices for val

The left argument to val specifies both contractions and transpositions.

The values we choose for contraction indices are unimportant. They are destined to disappear and we can spot
them as they appear in pairs in the left argument. For our purposes, any values will do.

However, for indices to represent transformations, we need to know their "natural" order. For a numeric argument,
this is just ordinary arithmetical order. So 3 2 represents a transposition but 2 3 does not. If the index vector is
character, we'll rely on ⎕ucs to provide the ordering – and that's exactly what happens in the function dense.

dense works on both numeric and character arguments, returning values drawn from consecutive integers starting
at 0. For example:

	 dense 3 0 6 3 1 
2 0 3 2 1 
	 dense 2 1.7 4.2 
1 0 2 
	 dense'ijjkqli' 
0 1 1 2 4 3 0

Although we will not make use of this, dense works as expected on more general APL values:

	 dense'first' 'third' 'second' 'ultimate' 
0 2 1 3

This is all well and good but what if we'd like to work with a character index vector rater than a numeric one?
First we'll have to decide on which characters to use. Here's a suggestion:

	 latin←'abcdefghijklmnopqrstuvwxyz' 
	 greek←'αβγδεζηθικλμνξοπρστυφχψω' 	 Currently unused 
	 dummy←'.-*∘=+∨∧'

Page of 10 50

	 cix←{ 	 Character index vector 
	 a←paired ⍵ ⋄ b←~a 	 starting at 'i' 
	 ((8⌽latin),dummy)[(a\26+dense a/⍵)+b\dense b/⍵]}

	 cix'qaikqb' 
.ikl.j

Note that cix is limited to 26 transposition indices and 8 contraction pairs. More than enough for our purposes.

Transpositions

Note that the transpositions specified in Einstein notation work in the same way as APL's dyadic transform.

APL's dyadic transform uses its left argument to specify where each axis in the right argument should be placed in
the result. So, for example, if the second element of the left argument is 4, this means that the second axis of the
right argument will be moved to position 4 in the result. val works in exactly the same way. Here's an example.

	 a←2 3 4 5 6⍴7 
	 ⍴t←0 4 1 2 3⍉a 
2 4 5 6 3 
	 t≡0 4 1 2 3 val a 
1

What if we have a dyadic transpose of an array, specified with ⍉, and we'd like to convert this to use val? If we
start with k⍉a, the equivalent is just k val a – but with the caveat that k must not specify a trace as that cannot be
represented in Einstein notation.

Contractions and dummy indices

Indices that are repeated in the left argument specify contractions. They must appear in pairs and, after the con-
tractions are made, the corresponding axes disappear. Here's an example that demonstrates the reduction of a rank
6 array to a matrix by applying two contractions. In the result, four axes are removed and we are left with a 2 by 5
matrix.

	 ⎕rl←16807 
	 a←?4 3 2 5 3 4⍴100 
	 ⊣t←'ijklji'val a

721 762 785 598 686 
418 614 762 492 627

Where the left argument to val implies a contraction, we are free to choose any character we want, as long as it's
not used elsewhere. That's known as a dummy index. For example:

	 t≡'.-ij-.'val a 
1

Successive applications of val

What if we use val twice on an array? As we're just doing contractions and transpositions, we ought to be able to
simplify and use val just once. What we'd like to do is replace x1 val x0 val a with just x val a.

First, an observation. The length of x1 cannot be greater than than the length of x0 (as val can never increase the
rank of its array argument).

Let's work through an example:

	 a←?3 2 4 2 5⍴9 
	 ⍴t←'kij'val'i.k.j'val a 
5 4 3

Page of 11 50

The first val to be executed does a contraction and rearranges the axes so that the result is of shape 3 5 4. This
comes about because, after the removal of the contraction axes, the shape is 3 4 5 and the indices 'ikj' ex-
change the last two axes. The second use of val causes a further rearrangement of these three axes giving a result
of shape 5 4 3.

We can simplify this by observing that the application of 'kij'val causes the first axis to be moved to the end.
That means we can achieve the same result with one application of val with an argument of 'k.j.i'.

	 t comp'j.i.k'val a 
1

Merging index vectors

Notice that it was not too difficult to combine the 'kij' and 'ikj'arguments to val in the expression above.
That's because there were no contractions to deal with. Where there are contractions, we have to be a little more
careful. Here's a function merge that will combine two val index arguments into one.

	 merge←{ 
	 x0←dense ⍵ ⋄ b←~a←paired x0	 Merge two index vectors 
	 x1←dense ⍺ ⋄ d←~c←paired x1 
	 t←a\26+dense a/x0 
	 s←x1 
	 s[⍸c]←26+(0.5×+/a)+dense c/x1 
	 s[⍸d]←dense d/x1 
	 t+b\s[dense b/x0]}

For example:

	 a←?3 4 5 6 3 2 4 1⍴9 
	 x0←'.inl.kmj' 
	 x1←'.ilk.j' 
	 ⍴b←x1 val x0 val a 
1 5 6 2 
	 ⊣x←x1 merge x0 
26 27 1 2 26 3 27 0 
	 cix ix 
.-jk.l-i 
	 b≡x val a 
1

Derivative of val

As the use of val involves nothing more than the rearrangement or summation of values provided in the right ar-
gument, we should expect that its derivative behaves much like the derivative of a sum. Here's an example involv-
ing a contraction:

	 {'..'val ⍵∘.×⍵}∆ 2 7 5 
4 14 10 
	 '..i'val{⍵∘.×⍵}∆ 2 7 5 
4 14 10

Page of 12 50

And here's one involving a transposition:

	 ⍴a←{'ji'val ⍵∘.×⍵}∆ 2 7 5 
3 3 3 
	 a comp'jik'val{⍵∘.×⍵}∆ 2 7 5 
1

Associativity of val

It is clear that val is associative under addition. So,

	 x val a+b ←→ (x val a)+x val b 	 	 [1]
...

Inner and outer product

Naturally, APL's inner product +.× can be expressed using val. Here are some common cases:

Useful relationships between trf and trfi

As shorthand, we'll define:

	 T←trf ∆ ⋄ t←T P 
	 TI←trfi ∆ ⋄ ti←TI Q

There is a relationship between T and TI which will be useful later on. Consider the expression trfi∘trf P. If we
take its derivative the result will be a unit matrix:

	 trfi∘trf ∆ P 
»	 (trfi ∆ trf P)+.×trf ∆ P	 Derivative of a composition

	 (TI Q)+.×T P ←→ id⍴P 	 	 [2]
...

Similarly, if we start with trf∘trfi ∆ q, we get:

	 (T P)+.×TI Q ←→ id⍴P 	 	 [3]
...

We can now go one step further and examine the relationship between the derivatives of T and TI. Consider the
expression (T∘trfi)ip TI ∆ Q. This is just the derivative of id⍴P which is of the same shape, but all zero. We
can expand this as follows:

m n m+.×n

Vector Vector '..'val m∘.×n

Matrix Vector 'i..'val m∘.×n

Matrix Matrix 'i..k'val m∘.×n

Rank 3 array Vector 'ij..'val m∘.×n

Page of 13 50

	 (T∘trfi)ip TI ∆ Q 
»	 ((T∘trfi Q)+.×TI ∆ Q)+¯1 sh(1 sh(T∘trfi)∆ Q)+.×TI Q 
»	 (t+.×TI ∆ Q)+¯1 sh(1 sh(T∘trfi)∆ Q)+.×ti 
»	 (t+.×TI ∆ Q)+¯1 sh(1 sh(T ∆ trfi Q)+.×trfi ∆ q)+.×ti 
»	 (t+.×TI ∆ Q)+¯1 sh(1 sh(T ∆ P)+.×ti)+.×ti 
»	 (t+.×TI ∆ q)+¯1 sh('jk..i'val(T ∆ p)∘.×ti)+.×ti 
»	 (t+.×TI ∆ Q)+¯1 sh'i-..k-j'val(T ∆ P)∘.×ti∘.×ti 
»	 (t+.×TI ∆ Q)+'i-..k-j'val(T ∆ P)∘.×ti∘.×ti

As we started with an expression producing a zero array, we can write:

	 (t+.×TI ∆ Q) ←→ -'i-..k-j'val(T ∆ P)∘.×ti∘.×ti

If we form an inner product on the left with ti, we now have:

	 TI ∆ Q ←→ -'*-.i*.k-j'val(T ∆ P)∘.×ti∘.×ti∘.×ti 	 	 [4]
..............................

And, had we started with (TI∘trf)ip T ∆ P, we'd get:

	 T ∆ P ←→ -'*-.i*.k-j'val(TI ∆ Q)∘.×t∘.×t∘.×t 	 	 [5]
.................................

Exercise

Synge and Schild [3] include an exercise (at page 8) which demonstrates working with tensors: If φ = arsxrxs,
show that ∂φ/∂xr = (ars + asr)xs. (This assumes that ars is a constant.)

First we'll set up an example just to show that the APL calculations work out:

	 a←4 4⍴3 1 4 2 9 5 0 6 7 3 1 4 2 9 5 0 
	 x←6 2 4 3 
	 phi←{'.-.-'val a∘.×⍵∘.×⍵} 
	 phi x 
822 
	 phi ∆ x 
112 137 107 90 
	 'i..' val(a+⍉a)∘.×x 
112 137 107 90 
	 (a+⍉a)+.×x 
112 137 107 90

Now let's use some of the derivative rules from Appendix B and the relationships we've set out for tensor evalua-
tions to prove the expression for phi ∆ x:

	 phi ∆ x 
»	 {'.-.-'val a∘.×⍵∘.×⍵}∆ x 
»	 '.-.-i'val{a∘.×⍵∘.×⍵}∆ x	 The derivative of a contraction is the  

contraction of the derivative.

The derivative term {a∘.×⍵∘.×⍵}∆ is of a function incorporating two outer products. Expanding this as the de-
rivative of an outer product with the constant a yields two terms, one of which has the derivative of the constant a.
As this term is zero, we are left with:

»	 '.-.-i'val a∘.×{⍵∘.×⍵}∆ x

Page of 14 50

We can expand the {⍵∘.×⍵}∆ term as the derivative of an outer product. It is helpful to define a unit matrix with
unit←id⍴x.

»	 '.-.-i'val a∘.×(x∘.×unit)+0 2 1⍉unit∘.×x 
»	 '.-.-i'val (a∘.×x∘.×unit)+a∘.×0 2 1⍉unit∘.×x

We can now introduce a transpose to make the right term refer to the product (⍉a)∘.×x∘.×unit:

»	 '.-.-i'val(a∘.×x∘.×unit)+1 0 3 2 4⍉(⍉a)∘.×x∘.×unit 
»	 ('.-.-i'val a∘.×x∘.×unit)+'.-.-i'val 1 0 3 2 4⍉(⍉a)∘.×x∘.×unit

Now we can combine the 1 0 3 2 4⍉ in the right term by combining it with the index argument to val. This
gives:

»	 ('.-.-i'val a∘.×x∘.×unit) + '-.-.i'val(⍉a)∘.×unit∘.×x

The dummy indices used in the second term can be exchanged giving:

»	 ('.-.-i'val a∘.×x∘.×unit) + '.-.-i'val(⍉a)∘.×x∘.×unit 
»	 '.-.-i'val(a∘.×x∘.×unit) + (⍉a)∘.×x∘.×unit 
»	 '.-.-i'val(a+⍉a)∘.×x∘.×unit

As a+⍉a is guaranteed to be symmetric, we can exchange the first two indices:

»	 '-..-i'val(a+⍉a)∘.×x∘.×unit 
»	 '--i'val(a+⍉a)+.×x∘.×unit	 Definition of inner product 
»	 '--i'val((a+⍉a)+.×x)∘.×unit	 Inner product is distributive 
»	 (a+⍉a)+.×x 	 Definition of inner product 

Page of 15 50

Variance

Invariance

Some mathematical objects require no adjustment under a coordinate transformation. Sokolnikoff puts it this way:

"An object, whatever its nature, is an invariant, provided that it is not altered by a transformation
of coordinates."

But surely this cannot be right? Consider the simple case where a point with coordinates P in a space measured in
metres is viewed from a space which makes measurements in centimetres. In that second space, we're going to see
coordinates of 100×P, which are certainly different values. The discrepancy is explained by noting that although
the values we see in the second space are numerically different, the point itself is unchanged. This means that:

• The points themselves do not change. It makes no difference whether a point is expressed in the coordinates
of the first space or of the second. Both references are to the same point.

• Vectors are determined by the difference between a pair of points. Again, it does not matter whether we use
the coordinates of the first space or of the second. The vector remains unchanged.

• A set of points, such as those forming a curve or a surface, is also invariant.

In general if we are taking a measurement in the P space with a function f, then the appropriate function to use in
Q is f∘trfi.

Contravariance

The differential element

Fairly frequently, analysis involves taking a tiny (in the limit, infinitesimal) step away from a point. If we're just
talking about a single point, we can simply add a vector of small values to those of the point to effect the transla-
tion. For example, at the point P←123 456 789, we could use an increment of dP←0.1 0.1 0.1 to make a small
step to the point 123.1 456.1 789.1. But, if instead of a single point we have an entire field to deal with, we
need to be more flexible. After all one of those points might be 1 1 1 and now our suggested value for dP is no
longer small. A better way to proceed is to use a function diff to be applied to the coordinates of a point which
will give us a suitable small value for the differential element.

In the general case, choosing the function diff can get complicated. But for now, we'll put any concerns to one
side and simply define diff as:

	 diff←{0.000001×⍵}

Transformation of the differential element

Suppose we have two points P and P+dP. We can transform these points with a function trf to points Q and Q+dQ.
Having done so, what is the relationship between dQ and dP?

As dQ is just the difference between the transformed points, we have:

	 dQ 
»	 (Q+dQ)-Q 
»	 (trf P+dp)-trf P

Page of 16 50

As dP is small relative to P, we can expand trf about P using a first order Taylor expansion. This produces

»	 ((trf P)+(trf ∆ P)+.×dP)-trf P 
»	 (trf ∆ P)+.×dP 
»	 (T P)+.×dP

Here's an example:

	 trf←{⍵*1.2} ⋄ trfi←{⍵*÷1.2} ⋄ T←trf ∆ ⋄ TI←trfi ∆ 
	 P←3 1 4 2 ⋄ q←trf P 
	 ⊣dP←diff P 
0.000003 0.000001 0.000004 0.000002 
	 ⊣dq←(trf P+dP)-trf P 
0.00000448463 0.0000012 0.00000633364 0.00000275688 
	 (T P)+.×dP 
0.00000448463 0.0000012 0.00000633364 0.00000275688 
	 T iP diff P 
0.00000448463 0.0000012 0.00000633364 0.00000275688

This last expression shows how diff must be varied for the Q space. But it does so using P as its argument. What
if we'd rather see Q as the argument? This is just:

	 T ip diff∘trfi Q 
0.00000448463 0.0000012 0.00000633364 0.00000275688

The transformation of the differential element is the prototype for the definition of the contravariant tensor.

Definition

A rank 1 1 function f is said to produce a contravariant vector field, if it transforms to be:

	 'i..'val T op f∘trfi 	 	 [6]
...

when applied to coordinates in Q. This is ∂x'r/∂xs Vs in Einstein notation.

Taking two steps

The example above demonstrates how a tensor field produced by a function diff in P space transforms to Q
space. What if we added on a second transformation that takes us back to P space from Q space? That just requires
us to use trf and TI in place of trfi and T for the second transformation.

	 'i..'val TI op('i..'val T op diff∘trfi)∘trf p 
0.000003 0.000001 0.000004 0.000002

Covariance

Transformation of the gradient of a function

Consider a function phi which acts on a vector of coordinates P. For example:

	 phi←{⍵+.*0.8 0.9 1 1.1} 
	 phi P←3 1 4 2 
9.55177

We can compute the gradient for phi with:

	 phi ∆ P 
0.642193 0.9 1 1.17895

Page of 17 50

If we now do the equivalent operation in the Q space, how is the gradient calculated there related to the gradient
in P? We can answer this question by observing that the function phi needs to be modified to phi∘trfi before use
in the second space. Doing so, we have:

	 trf←{⍵*1.4} 
	 trfi←{⍵*÷1.4} 
	 Q←trf P 
	 phi∘trfi ∆ Q 
»	 (phi ∆ trfi Q)+.×trfi ∆ Q	 The derivative of a composition 
»	 (phi ∆ P)+.×TI Q

This shows that the gradient calculated in the second space can be obtained from the gradient in the first space by
taking an inner product with the matrix TI Q.

The gradient of a function serves as the prototype for a covariant tensor field and, in general, we can use a differ-
ent function f in its place. Doing so, we have:

	 (f P)+.×TI Q 
»	 (f∘trfi)ip TI Q 
»	 '.i.'val TI op(f∘trfi)Q

Definition

A rank 1 1 function f is said to produce a covariant vector field, if it transforms to be:

	 '.i.'val TI op(f∘trfi) 	 	 [7]...

when applied to coordinates in Q. This is ∂xi/∂x'j Vi in Einstein notation.

Higher rank tensors

We should anticipate that tensors may be of higher rank. Dirac (p. 2) describes how these transform. He says:

"From the two contravariant vectors A𝜇 and B𝜇 we may form the sixteen quantities A𝜇B𝝂 ... some-
times called the outer product ... we can add together several tensors constructed in this way to
get a general tensor of the second rank, say

T𝜇𝝂 = A𝜇B𝝂 + A'𝜇B'𝝂 + A''𝜇B''𝝂 + ...

The important thing about the general tensor is that under a transformation of coordinates its
components transform in the same way as the quantities A𝜇B𝝂."

So, let's follow Dirac and examine the transformation of the outer product UiVj. In Einstein notation, the trans-
formed product is:

U'kV'l	 =	 (∂x'k/∂xi Ui) ∂x'l/∂xj Vj

For contravariant vector functions u and v, this becomes:

	 ('i..'val T op u∘trfi Q)∘.×'j--'val T op v∘trfi Q 
»	 'i..j--'val(T op u∘trfi)op(T op v∘trfi)Q 
»	 'i..j--'val T op u op T op v∘trfi Q 
»	 'i.j-.-'val T op T op u op v∘trfi Q 
»	 'i.j-.-'val T op T op(u op v)∘trfi Q

We can form a covariant matrix field in much the same way. In Einstein notation this is:

U'kV'l =	 (∂xi/∂x'k Ui) ∂xj/∂x'l Vj

Page of 18 50

As u and v are covariant vector functions, their outer product transforms to a point Q in the second frame as:

	 ('.i.'val TI op(u∘trfi)Q)∘.×'-j-'val TI op(v∘trfi)Q 
»	 ('.i.'val TI op(u∘trfi))op('-j-'val TI op(v∘trfi))Q 
»	 '.i.-j-'val TI op(u∘trfi)op TI op(v∘trfi)Q 
»	 '.i-j.-'val TI op TI op(u∘trfi)op(v∘trfi)Q 
»	 '.i-j.-'val TI op TI op(u op v∘trfi)Q

Definitions

We can use these results to form definitions for the transformation of contravariant and covariant matrix fields,
For f, a rank 2 1 function of the coordinates, we define

for a contravariant matrix field:

	 'i.j-.-'val T op T op f∘trfi 	 	 [8]
...

for a covariant matrix field:

'.i-j.-'val TI op TI op(f∘trfi) 	 	 [9]
..

when applied to coordinates in Q.

Rank 3 and higher

We can generalize these relations to rank 3 tensors. For f, a rank 3 1 function of the coordinates, we define

for a contravariant rank 3 field:

	 'i.j-k*.-*'val T op T op T op f∘trfi 	 	 [10]...

for a covariant rank 3 field:

'.i-j*k.-*'val TI op TI op TI op(f∘trfi) 	 	 [11]
.......................................

when applied to coordinates in Q.

And, as an example, here are two ways of writing the transformation of the rank 4 contravariant tensor z formed
as the sum of terms such as UαVβWγXδ:

	 'i.j-k*l∘.-*∘'i.jk.'val'val T op T op T op T op z∘trfi

	 0 4 1 5 2 6 3 7 4 5 6 7 val T op T op T op T op z∘trfi

Mixed tensors

It's no surprise that a function producing a field can transform with a mixture of covariant and contravariant parts.
For example, suppose we have vector fields produced by functions u and v. Assume that u forms a contravariant
vector field and v forms a covariant one. Then their individual transformations look like this:

	 'i..'val T op u∘trfi Q 	 Transformation of the contravariant vector field 
produced by u

	 '-j-'val TI op(v∘trfi)Q 	 Transformation of the covariant vector field  
produced by v

Now consider the outer product of u and v. How does this transform?

Page of 19 50

We have:

	 ('i..'val T op u∘trfi Q)∘.×'-j-'val TI op(v∘trfi)Q 
»	 'i..-j-'val(T∘trfi)op(u∘trfi)op TI op(v∘trfi)Q 
»	 'i.-j.-'val(T∘trfi)op TI op(u op v∘trfi)Q

Here's how the rank 5 mixed tensor Aijklm transforms:

	 'i.m+-j*k=l.-*=+'val(T op T∘trfi)op TI op TI op TI op(A∘trfi)q

Alternative forms

So far, we have tried to follow the way most authors write transformed tensors. For example, the transformation
rule for a covariant vector field is written conventionally as ∂xi/∂x'j Vi . This places the partial derivatives first, in
front of the vector term. In APL, this is 'iji'val TI op(f∘trfi)q. However, in Einstein notation, it is equally
valid to write Vi ∂xi/∂x'j and then the APL equivalent is 'iij'val(f∘trfi)op TI Q. So, there are alternatives.

It's possible to produce alternatives that make use of the inner product operator ip. The expressions for the vector
and matrix cases are certainly of interest. However, for the higher rank cases, the expressions become more awk-
ward.

For reference, here's a table of some equivalent forms:

Rank Einstein Notation APL

Scalar S s

Contravariant
Vector

∂x'r/∂xs Vs 'i..'val T op v∘trfi 
'.i.'val v op T∘trfi 
T ip v∘trfi

Covariant
Vector

∂xi/∂x'j Vi '.i.'val TI op(v∘trfi) 
'..i'val(v∘trfi)op TI 
(v∘trfi)ip TI

Contravariant
Matrix

∂x'k/∂xi ∂x'l/∂xj Mij 'i.j-.-'val T op T op m∘trfi 
'.-i.j-'val m op T op T∘trfi 
T ip m ip(⍉∘T)∘trfi

Covariant
Matrix

∂xi/∂x'k ∂xj/∂x'l Mij .i-j.-'val TI op TI op(m∘trfi) 
'.-.i-j'val(m∘trfi)op TI op TI 
⍉∘TI ip(m∘trfi)ip TI

Contravariant
Rank 3

∂xi/∂x'l ∂xj/∂x'm ∂xk/∂x'n Tijk i.j-k*.-*'val T op T op T op t∘trfi 
'.-*i.j-k*'val t∘trfi op T op T op T

Covariant
Rank 3

∂xi/∂x'l ∂xj/∂x'm ∂xk/∂x'n Tijk .i-j*k.-*'val TI op TI op TI op(t∘trfi) 
'.-*.i-j*k'val(t∘trfi)op TI op TI op TI

Page of 20 50

Associativity of tensor transformations

Contravariant transformations

Iverson includes a very useful proof dealing with two successive applications of the contravariant transformation
operator. He says (at page 350):

"We will now illustrate the use of the operators in proofs considering the "contravariant-trans-
form" operator CT defined, for any function F and invertible differentiable function T (both of
rank 1 1), by:

T CT F ←→ T∆⊕F¨(T⍣¯1)

and the proposition that CT is associative in the following sense:

U CT(T CT F) ←→ (U¨T)CT F "

Let's redo Iverson's proof in APL. To be consistent in our use of symbols, we'll refer to u and v in place of Iver-
son's T and U. This means that we'd like to establish the following:

	 (u∘v)ct f ←→ u ct(v ct f)

For clarity we'll write ui for u⍣¯1, vi for v⍣¯1 and define ct as:

	 ct←{⍺⍺ ∆ ip ⍵⍵∘(⍺⍺⍣¯1)⍵}

Then,

	 (u∘v)ct f 

»	 (u∘v)∆ ip f∘(u∘v)⍣¯1	 Definition of ct for the composition u∘v 
»	 (u∘v)∆ ip f∘(vi∘ui)	 Inverse of the composition u∘v 
»	 (u∘v)∆∘(vi∘ui)ip(f∘(vi∘ui))	 Matrix product of (u∘v)∆ with the 

composition of f and (vi∘ui) 
»	 (u∘v)∆∘(vi∘ui)ip(f∘vi∘ui)	 Associativity of f∘(vi∘ui) 
»	 u ∆∘v ip(v ∆)∘(vi∘ui)ip(f∘vi∘ui)	 Derivative of the composition u∘v 
»	 u ∆∘v∘vi∘ui ip(v ∆∘vi∘ui)ip(f∘vi∘ui)	 Matrix product of u ∆∘v with the 

composition of v ∆ and (vi∘ui) 
»	 u ∆∘ui ip(v ∆∘vi∘ui)ip(f∘vi∘ui)	 Composition of v & its inverse vi 
»	 u ∆∘ui ip(v ∆∘vi∘ui ip(f∘vi∘ui)) 	 Associative law for the matrix product 

(v ∆∘vi∘ui)ip(f∘vi∘ui) 

»	 u ∆∘ui ip(v ∆∘vi ip(f∘vi)∘ui) 	 Matrix product of the composition of 
v ∆∘vi and f∘vi with ui 

»	 u ∆ ip (v ∆∘vi ip(f∘vi))∘ui 	 Matrix product of the composition of u ∆ 
and v ∆∘vi ip(f∘vi) with ui 

»	 u ct (v ∆∘vi ip (f∘vi))	 Definition of u ct (...) 
»	 u ct (v ∆ ip f∘vi)	 Matrix product of the composition of v ∆ 

and f with vi 
»	 u ct (v ct f)	 Definition of u ct f

Page of 21 50

For example:

	 P←3 1 4 2 
	 f←{⍵×2+⍳⍴⍵} 
	 u←*∘3 ⋄ ui←*∘(÷3) 
	 v←*∘1.2 ⋄ vi←*∘(÷1.2) 
	 (u∘v)ct f P 
21.6 10.8 57.6001 36 
	 u ct(v ct f)P 
21.6 10.8 57.6001 36

Covariant transformations

As we did above for the contravariant transform operator, we can show that the successive use of the covariant
transform operator with two transformations is equivalent to a single application of the operator using the compo-
sition of the two transformations.

Suppose we have a function f creating a covariant vector field and two transformations u and v to be applied to
the coordinates, then if we define,

	 ui←u⍣¯1 ⋄ vi←v⍣¯1 
	 cv←{⍺⍺∘⍵⍵ ip (⍵⍵ ∆)⍵}

we need to establish that:

	 f cv (vi∘ui) ←→ (f cv vi)cv ui	

Here's the proof,:

»	 (f∘vi∘ui) ip (vi∘ui ∆)	 Definition of cv for the inverse of the 
composition u∘v

»	 f∘vi∘ui ip (vi ∆∘ui ip (ui ∆))	 Derivative of the composition vi∘ui

»	 f∘vi∘ui ip (vi ∆∘ui) ip (ui ∆) 	 Associative law for matrix product

»	 f∘vi ip (vi ∆)∘ui ip (ui ∆) 	 Matrix product of the composition of 
f∘vi∘ui and vi ∆∘ui

»	 (f cv vi)∘ui ip (ui ∆)	 Definition of cv for the v transformation

»	 (f cv vi)cv ui	 Definition of cv for the u transformation

and an example:

	 f←{⍵*1 2 3 4} 
	 u←{⍵*1.5} ⋄ ui←{⍵÷*1.5} 
	 v←{⍵*1.2} ⋄ vi←{⍵*÷1.2} 
	 Q←u∘v P 
	 f cv(vi∘ui) Q 
0.0957929 0.833333 0.12091 0.458162 
	 (f cv vi) cv ui Q 
0.0957929 0.833333 0.12091 0.458162 

Page of 22 50

The Metric Tensor

Distance

Suppose we have a surface defined by a function of the coordinates. How do we calculate the distance between
two points P1 and P2 on that surface?

If the surface is planar (i.e. a linear function of the coordinates) we can get the "straight line" distance between the
points with:

	 hyp P1-P2

The result of this calculation is a scalar. More commonly authors prefer to work with the square of this value:

	 ssq P1-P2

What if we want the length of a path that is not "straight" but wanders around on a planar surface? Then we'll
have to do a summation or integration of smaller elements to get the result. If dP is the vector that separates two
points that are very close together, the square of the distance element is:

	 dP+.×dP	 ds2 = dpi gij dpj

Notice that in Einstein notation, we have had to introduce a rank 2 object gij to make the contractions happen. It's
clearly symmetric and in a flat space only has non-zero elements on the diagonal. For ordinary Euclidean calcula-
tions gij is just a unit matrix and we could write the APL version as dP+.×(id N)+.×dP.

When space is curved, gij has non-zero off diagonal elements and both dp and gij become functions of the coordi-
nates. Because of its role in determining the metric properties of space, gij is known as the metric tensor.

Transformation of the distance

As the distance is a scalar, we expect it to be invariant under a transformation of coordinates. Let's show that this
is so.

We'll start with a general quadratic form xi gij xj where x is a contravariant vector field produced by a function f
and gij is a covariant matrix field. In APL this is f ip g ip f P. Transformed, this becomes:

	 ((T P)+.×f P)+.×('.-.i-j'val g∘trfi op TI op TI Q)+.×(T P)+.×f P

It's worth making a few substitutions to avoid some of the parentheses:

	 a←f P ⋄ b←g P ⋄ c←T P ⋄ d←TI Q

Then f ip g ip f P transforms to:

»	 (c+.×a)+.×('.-.i-j'val b∘.×d∘.×d)+.×c+.×a

We can eliminate the use of val by making a suitable transpose of the b∘.×d∘.×d term and replacing ∘.× with
+.×.

»	 (c+.×a)+.×('-..i-j'val (⍉b)∘.×d∘.×d)+.×c+.×a 
»	 (c+.×a)+.×('-i-j'val(⍉b)+.×d∘.×d)+.×c+.×a 
»	 (c+.×a)+.×((⍉(⍉b)+.×d)+.×d)+.×c+.×a

Page of 23 50

Then,

»	 (c+.×a)+.×(((⍉d)+.×b)+.×d)+.×c+.×a	 x+.×y ←→ ⍉(⍉y)+.×⍉x 
»	 (c+.×a)+.×((⍉d)+.×b)+.×d+.×c+.×a	 +.× is associative 
»	 (c+.×a)+.×((⍉d)+.×b)+.×a	 d+.×c is a unit matrix 
»	 (c+.×a)+.×(⍉d)+.×b+.×a 	 +.× is associative 
»	 ((c+.×a)+.×⍉d)+.×b+.×a	 +.× is associative 
»	 (⍉d+.×⍉c+.×a)+.×b+.×a	 x+.×y ←→ ⍉(⍉y)+.×⍉x 
»	 (⍉d+.×c+.×a)+.×b+.×a	 c+.×a is a vector 
»	 (⍉a)+.×b+.×a 	 d+.×c is a unit matrix 
»	 a+.×b+.×a	 a is a vector

This shows that the quadratic form xi gij xj is invariant and transforms as a tensor.

Definition of the metric tensor

Let's suppose that we calculate ds, the element of arc, in a space of rectangular coordinates as the square root of
the scalar product of dxi with itself. Observing that the contravariant tensor dxi is a function of the coordinates, we
can write this in APL as:

	 diff ip diff P

If we then change to a different coordinate space, via a transformation trf, this becomes:

	 (T ip diff∘trfi Q)+.×T ip diff∘trfi Q 
»	 (T ip diff)ip T ip diff∘trfi Q 
»	 '.--.**'val T op diff op T op diff∘trfi Q 
»	 '-.-.**'val diff op T op T op diff∘trfi Q 
»	 '∘-..**'val diff op (⍉T)op T op diff∘trfi Q 
»	 diff ip(⍉T)ip T ip diff∘trfi Q

It is from this that the definition of the metric tensor is chosen. The central expression (⍉T)ip T is a covariant
tensor of rank 2. It is a function of trf, so we can define an operator to use as trf metric , appropriate for any
field:

	 metric←{t←⍺⍺ ∆ ⋄ (⍉t)ip t ⍵} 	 	 [12]
...

Let's start with oblique axes:

	 obl←{0 1 2 3+2 7 1 8×⍵}	 Oblique axes 
	 obli←{(⍵-⍳4)÷2 7 1 8} 
	 ⊣Q←obl P←3 1 4 2 
6 8 6 19 
	 obl metric P 
4 0 0 0 
0 49 0 0 
0 0 1 0 
0 0 0 64

Page of 24 50

Oblique axes produce a metric tensor which gives values having zero for the off-diagonal elements. Now, let's see
what we get with moving axes (as in Special Relativity):

	 vel←0.2	 vel is a velocity 
	 sr←{x y z t←⍵ ⋄ (x-vel×t),(y-2×vel×t),z,t}	 Axes moving in the x-y plane 
	 sri←{x y z t←⍵ ⋄ (x+vel×t),(y+2×vel×t),z,t} 
	 sr metric P 
 1 0 0 ¯0.2 
 0 1 0 ¯0.4 
 0 0 1 0 
¯0.2 ¯0.4 0 1.2

As the x and y axes are functionally dependent on the t axis, the metric tensor has off-diagonal non-zero ele-
ments.

Lastly, let's examine the values produced by the metric tensors for spherical and cylindrical coordinates:

	 sph metric 3 4 12 
0.0806695 0.0542261 0.211757 
0.0542261 0.112301 0.282343 
0.211757 0.282343 0.852946

	 cyl metric 3 4 5 
0.3856 0.4608 0 
0.4608 0.6544 0 
0 0 1

Notice that for spherical coordinates, the metric tensor can have non-zero elements in all positions.

The fundamental tensors

The metric tensor defined above is also known as the fundamental tensor. It is a symmetric, covariant function.
There is a counterpart to this function which is contravariant and is defined as its inverse.

In the P space, the value produced by the fundamental tensor at a point P is:

	 g←(⍉trf ∆ p)+.×trf ∆ P

We can reduce this to an identity matrix, as follows:

	 (trfi ∆ Q)+.×(⍉trfi ∆ Q)+.×g 
»	 (trfi ∆ Q)+.×(⍉trfi ∆ Q)+.×(⍉trf ∆ P)+.×trf ∆ p 
»	 (trfi ∆ Q)+.×(⍉(T P)+.×TI Q)+.×trf ∆ P 
»	 (trfi ∆ Q)+.×trf ∆ P	 using (T P)+.×TI Q ←→ (id⍴p) 
»	 (TI Q)+.×T P 
»	 id⍴P 	 using (TI Q)+.×T p ←→ (id⍴p)

Then we can produce the inverse of the covariant function with an operator to use as trfi metrici∘trf with:

	 metrici←{t←⍺⍺ ∆ ⋄ t ip(⍉t)⍵} 	 	 [13]
...

Page of 25 50

Here's an example using cylindrial coordinates:

	 g←cyl metric 
	 gi←cyli metrici∘cyl 
	 gi ip g 3 1 4 
1.00001 0.00000905151 0 
¯0.00000381988 0.999993 0 
 0 0 1

	 g ip gi 3 1 4 
1.00001 ¯0.00000381988 0 
0.00000905151 0.999993 0 
0 0 1

Raising and lowering indices

In Einstein notation, the fundamental tensors can be used to "raise and lower" indices. In other words, this means
that a function producing a covariant tensor field can be modified so that it now transforms as a contravariant ten-
sor; and vice versa.

Ai = gij Aj Covariant to contravariant 
Ai = gij Aj Contravariant to covariant

We'll demonstrate this with two examples, using the following definitions:

	 trf←{3 1 4×*⍵} ⋄ trfi←{⍟⍵÷3 1 4} 
	 Q←trf P←3 1 4 
	 g←trf metric 
	 gi←trfi metrici∘trf 
	 T←trf ∆ ⋄ TI←trfi ∆ 
	 f←{⍵*3}

First, if f is used to define a covariant vector field, does gi ip f transform as a contravariant tensor?

	 t←('i.j-.-'val T op T op gi∘trfi Q) +.× '.i.'val TI op(f∘trfi)Q 
	 t comp'i..'val T op(gi ip f)∘trfi Q 
1

Yes, it does. Now let's consider f as forming a contravariant vector field. Does g ip f, transform as a contravari-
ant tensor?

	 j←('.i-j.-'val TI op TI op(g∘trfi)Q) +.× 'i..'val T op f∘trfi Q 
	 j comp'.i.'val TI op(g ip f∘trfi)Q 
1

It is interesting to note that the function we've defined here f has remained unchanged throughout both examples.
It was employed to create a field and the values provided only depended on the coordinates Q, not on the trans-
formation function trf. Separately, we declared whether the field was covariant or contravariant. Sokolnikoff
refers to tensors derived by raising and lowering indices in this way as associated tensors.

Page of 26 50

Testing the metric's tensor character

Earlier we described how the surface of a sphere is defined as a collection of points in a 3 dimensional Cartesian
reference frame. For a point p with coordinates x, y and z to lie on the surface of a sphere of radius r centred on
the origin, its coordinates must satisfy r=⍥ssq x,y,z.

Points on the surface of the sphere can be identified by either their Cartesian coordinates x, y and z in the P space
or by their spherical coordinates r, theta and psi in the Q space and we can switch between the two with:

	 r theta psi←sph x,y,z

and

	 x y z←sphi r,theta,psi

At a point P on the surface, we can identify local axes (shown in red) corresponding to increasing values of the
spherical coordinates r, θ and ψ. Using those axes, we can define points with coordinates relative to P. And from
there we can then define vectors as the difference between pairs of those points.

One vector of particular interest is the differential element which we have used as the prototype for a contravari-
ant tensor. On the surface, in the coordinates of the Q space, the differential element is given by diff Q. The met-
ric tensor on the surface is calculated from sph, the function that transforms coordinates from Cartesian to spheri-
cal. Now we can calculate the square of the distance with:

	 Q←sph 3 4 12 Spherical coordinates 
	 g←sph metric	 The metric tensor for the surface 
	 diff ip g ip diff Q	 The square of the differential element 
1.70016E¯10

Page of 27 50

r

θ

ψ

x

y

z

P←x,y,z

Q←sph P

Let's now consider how this appears to a different observer (in the R space), one whose coordinates are related to
the Q space by a transform function trf.

	 trf←{3 1 4×*⍵} ⋄ trfi←{⍟⍵÷3 1 4} 
	 R←trf Q	 from Q space to R space 
	 T←trf ∆ ⋄ TI←trfi ∆ 
	 diffr←T ip diff∘trfi	 As diff is a contravariant vector tensor 
	 gr←{'.-.i-j'val g∘trfi op TI op TI ⍵}	 As g is a covariant matrix tensor 
	 diffr ip gr ip diffr R 
1.70016E¯10

This demonstrates that the metric transforms as a covariant matrix tensor.

Page of 28 50

Q←sph P

R←trf Q

The Covariant Derivative Operator

The covariant derivative is rather special. It is an essential tool for writing the equations of physics in a frame in-
variant form – that is as tensor equations. It is not the same as the regular derivative.

There are several approaches to establishing a definition. Dirac and many others appeal to a geometric approach,
relying on understanding how the parallel transport of a vector in a curved space takes place. I've chosen to follow
Sokolnikoff and use a more analytical approach.

However, both approaches involve an understanding of the Christoffel symbols.

Christoffel symbols

Christoffel symbols are rank 3 functions of the metric tensor. There are two kinds.

The symbol of the first kind C1 is defined in terms of the derivative of the metric tensor of a surface produced by a
function trf as:

	 chr←{0.5×(0 2 1⍉⍵)+(1 2 0⍉⍵)-⍵} 
	 g←trf metric 
	 gi←trfi metrici∘trf

	 C1←chr g ∆ 	 	 [14]
...

Sokolnikoff defines the symbol of the second kind as:

	 C2←'i.jk.'val gi op C1

We'll use a slightly different, but equivalent, expression:

	 C2←C1 ip ⍉gi 
»	 C1 ip gi 	 	 [15]
...

It is clear from the definitions that C1 and C2 are both symmetric with respect to the first two axes. Let's show this
with an example:

	 trf←sph ⋄ trfi←sphi 
	 Q←trf P←3 4 12 
	 g←(⍉dsph)ip dsph	 For better numerical accuracy 
	 gi←dsphi ip(⍉dsphi)∘sph	 ditto 
	 C1←chr g ∆ 
	 C2←C1 ip gi 
	 {⍵ comp 1 0 2⍉⍵}C1 Q 
1 
 	 {⍵ comp 1 0 2⍉⍵}C2 Q 
1

Note that C1 can be expressed in terms of C2 with:

	 C1 ←→ C2 ip g 	 [16]
..

Page of 29 50

The derivative of the metric tensor

We can express the derivative of the metric tensor in terms of C1. Consider the expression:

	 ('ikj'val C1 Q)+'jki'val C1 Q

Writing m←g ∆ Q and substituting for C1 Q as chr m, we have:

»	 (0 2 1⍉chr m)+1 2 0⍉chr m 
»	 (0 2 1⍉0.5×(0 2 1⍉m)+(1 2 0⍉m)-m)+1 2 0⍉0.5×(0 2 1⍉m)+(1 2 0⍉m)-m 
»	 0.5×(0 2 1⍉0 2 1⍉m)+(0 2 1⍉1 2 0⍉m)+(-0 2 1⍉m) 
	 +(1 2 0⍉0 2 1⍉m)+(1 2 0⍉1 2 0⍉m)+(-1 2 0⍉m) 
»	 0.5×m+(2 1 0⍉m)+(-0 2 1⍉m)+(1 0 2⍉m)+(2 0 1⍉m)+(-1 2 0⍉m)

Because of the symmetry of the first two axes of m, the second and sixth terms cancel; as do the third and fifth
terms. This leaves:

»	 0.5×m+1 0 2⍉m

Again, because of the symmetry, these two terms are identical and the expression reduces to m. Therefore:

	 trf metric ∆ Q ←→ {('ikj'val ⍵)+'jki'val ⍵}C1 Q 	 	 [17]
..............................

Transformation of the Christoffel symbols

Are the Christoffel symbols tensors? To answer this question we need to look at what we get if we transform the
component parts of C1 (or C2). If, having done those transformations, we end up with an expression that is just a
tensor transformation of C1, then we are done: C1 is a tensor. Otherwise, not.

Transformation of C1

C1 is defined in terms of the metric tensor g for a space. As g is a covariant tensor of rank 2, it transforms to be in
the R space:

	 h←'.i-j.-'val TI op TI op(g∘trfi)

We can construct the Christoffel symbol of the first kind for the transformed metric h. This is:

	 D1←chr h ∆

To expand this, so we can get back to g, will be done in two steps. First we'll expand the derivative of h in terms
of g. Then we'll expand the effect of chr applied to h ∆ R.

To simplify some of the typing let's define:

	 a←TI op TI op(g∘trfi ∆)R 
	 b←TI op(TI ∆)op(g∘trfi)R 
	 c←(TI ∆)op TI op(g∘trfi)R 
	 t←T Q 
	 ti←TI R

Note that:

	 b≡2 3 4 0 1 5 6⍉c 	 [18]
..

Page of 30 50

(1) The derivative of h

	 h ∆ R 
»	 ('.i-j.-'val TI op TI op(g∘trfi))∆ R

We can bring the val function outside the derivative:

»	 '.i-j.-k'val(TI op TI op(g∘trfi))∆ R

Expanding the derivative of the rightmost outer product with TI, we get:

»	 '.i-j.-k'val a+0 1 2 3 6 4 5⍉TI op TI ∆ op(g∘trfi)R 
»	 ('.i-j.-k'val a)+'.i-j.-k'val 0 1 2 3 6 4 5⍉TI op TI ∆ op(g∘trfi)R

We can remove the dyadic transform in the second term by combining it with the val function:

»	 ('.i-j.-k'val a)+'.i-jk.-'val TI op TI ∆ op(g∘trfi)R

Expanding the TI op TI ∆ term, we have:

»	 ('.i-j.-k'val a)+'.i-jk.-'val((TI op(TI ∆))+0 1 4 2 3⍉(TI ∆ op TI))op(g∘trfi)R 
»	 ('.i-j.-k'val a)+'.i-jk.-'val b+0 1 4 2 3 5 6⍉c 
»	 ('.i-j.-k'val a)+('.i-jk.-'val b)+'.i-jk.-'val 0 1 4 2 3 5 6⍉c

Again, we can combine the dyadic transform of c with the val function in the last term:

»	 ('.i-j.-k'val a)+('.i-jk.-'val b)+'.ik-j.-'val c

The central term here manipulates the array b. We can revise this using [18] to instead work on the array c:

»	 ('.i-j.-k'val a)+('.i-jk.-'val 2 3 4 0 1 5 6⍉c)+'.ik-j.-'val c

and

	 h ∆ R ←→ ('.i-j.-k'val a)+('-jk.i.-'val c)+'.ik-j.-'val c 	 [19]
....................

(2) The Christoffel symbol for h

Now let's return to the Christoffel symbol of the first kind for the transformed metric h. This is:

	 D1←chr h ∆ R 
»	 (chr'.i-j.-k'val a)+(chr'-jk.i.-'val c)+chr'.ik-j.-'val c

We can expand chr in the last two terms to get:

»	 (chr'.i-j.-k'val a) 
	 +0.5×('ikj'val'-jk.i.-'val c)+('jki'val'-jk.i.-'val c)+(-'-jk.i.-'val c) 
	 +('ikj'val'.ik-j.-'val c)+('jki'val'.ik-j.-'val c)+(-'.ik-j.-'val c)

The last six terms all refer to c and, of these, four have a double application of val. We can simplify using merge,
as follows:

	 ix←(6⍴'ikj' 'jki' 'ijk')merge¨3/'-jk.i.-' '.ik-j.-' 
	 cix¨ix

┌───────┬───────┬───────┬───────┬───────┬───────┐

│.kj-i-.│.ki-j-.│.jk-i-.│-ij.k-.│-ji.k-.│-ik.j-.│

└───────┴───────┴───────┴───────┴───────┴───────┘

	 d←ix val¨⊂c

»	 (chr'.i-j.-k'val a)+⊃+/0.5×1 1 ¯1 1 1 ¯1×d

Page of 31 50

In this expression d has six elements, each being derived from c. Due to symmetry, a number of these terms are
the same, and we can simplify. We can see where the matches are with:

	 1=d∘.comp d

1 0 1 0 0 0

0 1 0 0 0 1

1 0 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0

0 1 0 0 0 1

As the first and third terms match and they are of opposite sign, they cancel out. Similarly for the second and the
sixth terms. We are just left with the fourth and fifth terms. These two terms are identical and their sum eliminates
the 0.5 factor. This gives:

»	 (chr'.i-j.-k'val a)+'-ij.k-.'val c

Replacing a in the first term by TI op TI op(g∘trfi ∆)r and evaluating the derivative of the g∘trfi composi-
tion:

»	 (chr'.i-j.-k'val TI op TI op(g∘trfi ∆)R)+'-ij.k-.'val c 
»	 (chr'.i-j.-k'val ti∘.×ti∘.×g∘trfi ∆ R)+'-ij.k-.'val c 
»	 (chr'.i-j.-k'val ti∘.×ti∘.×(g ∆ trfi R)+.×ti)+'-ij.k-.'val c 
»	 (chr'.i-j*k.-*'val ti∘.×ti∘.×ti∘.×(g ∆ q))+'-ij.k-.'val c 
»	 ('.i-j*k.-*'val ti∘.×ti∘.×ti∘.×chr g ∆ q)+'-ij.k-.'val c 
»	 ('.i-j*k.-*'val ti∘.×ti∘.×ti∘.×C1 q) + '-ij.k-.'val c

The first term in this expression above is just the transformed version of C1, the type 1 Christoffel symbol for the
metric tensor g. It is interesting to compare this with the comparable expression shown by Sokolnikoff (equation
32.3 at p. 83) in Einstein notation:

∂xα/∂yi ∂xβ/∂yj ∂xγ/∂yk x[αβ,γ]

As the Christoffel function C1 is of rank 3, TI appears three times as we'd expect. But what about the index argu-
ment to val? Do we have indices that correspond with those used in the Einstein notation? Here's how to check.
Simply write out the indices as they appear in Einstein notation and apply the cix function:

	 cix 'αiβjγkαβγ' 
.i-j*k.-*

If we could stop there, we would conclude that C1 is a tensor. However, there is that second term, which is not
zero in general. The conclusion must be that C1 is not a tensor.

The second term is shown by Sokolnikoff in Einstein notation as:

∂2xα/∂yi ∂yj ∂xβ/∂yk gαβ

Does this match the APL term '-ij.k-.'val c? Let's expand c and see what we have:

	 '-ij.k-.'val c 
»	 '-ij.k-.'val(TI ∆)op TI op(g∘trfi)r

We clearly have a TI ∆ term, which is the second derivative of trfi; and a term for the transform for the covari-
ant g. Do we have the correct indices to use with val?

	 '-ij.k-.' ≡⍥cix 'αijβkαβ' 
1

In summary, C1 transforms to become:

	 D1←('.i-j*k.-*'val TI op TI op TI op(C1∘trfi)R) 
	 +'-ij.k-.'val(TI ∆)op TI op(g∘trfi)R 	 [20]
..

Page of 32 50

Transformation of C2

We can determine how C2 transforms from its definition as C1 ip gi. It will be D2←D1 ip hi where:

	 hi←'i.j-.-'val T op T op gi∘trfi

	 D1 ip hi R 
»	 (('.i-j*k.-*'val TI op TI op TI op(C1∘trfi)R)+.×hi R) 
	 + 
	 ('-ij.k-.'val(TI ∆)op TI op(g∘trfi)R)+.×hi R

Let's deal with these two terms one at a time. For the first term we have:

	 ('.i-j*k.-*'val TI op TI op TI op(C1∘trfi)R)+.×hi R 
»	 ('.i-j*k.-*'val ti∘.×ti∘.×ti∘.×C1 Q)+.×hi r 
»	 ('.i-j*k.-*'val ti∘.×ti∘.×ti∘.×C1 Q)+.×'i.j-.-'val T op T op gi∘trfi R 
»	 ('.i-j*∘.-*'val ti∘.×ti∘.×ti∘.×C1 Q)+.×'∘=k+=+'val T op T op gi Q 
»	 '.i-j*∘.-*∘=k+=+'val ti∘.×ti∘.×ti∘.×(C1 Q)∘.×T op T op gi Q 
»	 '.i-j.-**∘∘=k+=+'val ti∘.×ti∘.×(C1 Q)∘.×ti∘.×T op T op gi Q 
»	 '.i-j.-**=k+=+'val ti∘.×ti∘.×(C1 Q)∘.×ti+.×T op T op gi Q 
»	 '.i-j.-=k+=+'val ti∘.×ti∘.×(C1 Q)+.×(id⍴Q)∘.×T op gi Q 
»	 '.i-j.-=k+=+'val ti∘.×ti∘.×(C1 Q)∘.×T op gi Q 
»	 '.i-jk+.-==+'val ti∘.×ti∘.×t∘.×(C1 Q)∘.×gi Q 
»	 '.i-jk+.-+'val ti∘.×ti∘.×t∘.×C1 ip gi Q 
»	 '.i-jk+.-+'val ti∘.×ti∘.×t∘.×C2 Q

»	 'k+.i-j.-+'val t∘.×ti∘.×ti∘.×C2 Q 	 [21]
..

Sokolnikoff shows the equivalent in Einstein notation as:

∂yk/∂xρ ∂xα/∂yi ∂xβ/∂yj x {ρ,αβ}

(Note that this is where Einstein notation starts to become awkward. The subscripted x in front of the Christoffel
symbol indicates "to be evaluated in the untransformed space". In APL, this is simply accomplished by choosing
Q as the function argument.)

This is just what we should expect for the transformation of C2 if it were a mixed tensor, twice covariant and once
contravariant. However, because of the second term, C2 is not a tensor (unless trf is affine).

The second term is:

	 ('-ij.k-.'val c)+.×hi R 
»	 ('-ij.k-.'val(TI ∆)op TI op(g∘trfi)R)+.×'i.j-.-'val T op T op gi∘trfi R 
»	 ('-ij.k-.'val(TI ∆ R)∘.×ti∘.×(g Q))+.×'i.j-.-'val t∘.×t∘.×gi Q 
»	 ('-ij.∘-.'val(TI ∆ R)∘.×ti∘.×(g Q))+.×'∘*k=*='val t∘.×t∘.×gi Q 
»	 '-ij.∘-.∘*k=*='val(TI ∆ R)∘.×ti∘.×(g Q)∘.×t∘.×t∘.×gi Q 
»	 '-ij-..∘∘*k=*='val(TI ∆ R)∘.×(g Q)∘.×ti∘.×t∘.×t∘.×gi Q 
»	 '-ij-..*k=*='val(TI ∆ R)∘.×(g Q)∘.×ti+.×t∘.×t∘.×gi Q 
»	 '-ij-..*k=*='val(TI ∆ R)∘.×(g Q)∘.×(id⍴Q)∘.×t∘.×gi Q 
»	 '-ij-*k=*='val(TI ∆ R)∘.×(g Q)∘.×t∘.×gi Q 
»	 '-ijk=-**='val(TI ∆ R)∘.×t∘.×(g Q)∘.×gi Q 
»	 '-ijk=-='val(TI ∆ R)∘.×t∘.×id⍴ Q 
»	 '-ijk==-'val(TI ∆ R)∘.×t∘.×id⍴ Q 
»	 '-ijk-'val(TI ∆ R)∘.×t+.×id⍴ Q

»	 '-ijk-'val(TI ∆ R)∘.×t 	 [22]
...

Page of 33 50

Sokolnikoff shows the equivalent in Einstein notation as:

∂2xα/∂yi ∂yj ∂yk/∂xα

Recombining the two terms we have:

	 D2 R 
»	 ('k+.i-j.-+'val t∘.×ti∘.×ti∘.×C2 Q)+'-ijk-'val(TI ∆ R)∘.×t 
»	 ('k+.i-j.-+'val t∘.×ti∘.×ti∘.×C2 Q)+'kij'val t+.×TI ∆ R

We can solve this equation for TI ∆ R. The first step is to apply a 1 2 0⍉ to all the terms. Doing so, we have:

	 1 2 0⍉D2 R 
»	 (1 2 0⍉'k+.i-j.-+'val t∘.×ti∘.×ti∘.×C2 Q)+t+.×TI ∆ R

Then we apply a left inner product with ti:

	 ti+.×1 2 0⍉D2 R 
»	 (ti+.×1 2 0⍉'k+.i-j.-+'val t∘.×ti∘.×ti∘.×C2 Q)+TI ∆ R

Rearranging terms, this gives:

	 TI ∆ R 
»	 (ti+.×1 2 0⍉D2 R)-ti+.×1 2 0⍉'k+.i-j.-+'val t∘.×ti∘.×ti∘.×C2 Q 
»	 (ti+.×1 2 0⍉D2 R)-ti+.×'i+.j-k.-+'val t∘.×ti∘.×ti∘.×C2 Q 
»	 (ti+.×1 2 0⍉D2 R)-'i+.j-k.-+'val ti+.×t∘.×ti∘.×ti∘.×C2 Q 
»	 (ti+.×1 2 0⍉D2 R)-'i+.j-k.-+'val(id⍴Q)∘.×ti∘.×ti∘.×C2 Q 
»	 (ti+.×1 2 0⍉D2 R)-'.j-k.-+i+'val ti∘.×ti∘.×(C2 Q)∘.×id⍴Q 
»	 (ti+.×1 2 0⍉D2 R)-'.j-k.-++i'val ti∘.×ti∘.×(C2 Q)∘.×id⍴Q 
»	 (ti+.×1 2 0⍉D2 R)-'.j-k.-i'val ti∘.×ti∘.×C2 Q 
»	 (ti+.×'jki'val D2 R)-'.j-k.-i'val ti∘.×ti∘.×C2 Q

»	 ('i.jk.'val ti∘.×D2 R)-'.j-k.-i'val ti∘.×ti∘.×C2 Q 	 [23]
.............................

Covariant derivative of a covariant vector field

Consider the field produced by a covariant vector function f. As it's covariant it transforms to be F←(f∘trfi)ip
TI. What is the derivative of F?

We'll continue using the example of working on the surface of a sphere. Our sample point will still be Q and we'll
consider a vector field f being transformed by the twisted function tw to F in the R space. For example:

	 f←{⍵*3}

We can form F's derivative in the usual way:

	 F ∆ R 
»	 (f∘trfi)ip TI ∆ R 
»	 ((f Q)+.×TI ∆ R)+¯1 sh(1 sh(f∘trfi)∆ R)+.×TI R 
»	 ((f Q)+.×TI ∆ R)+⍉(⍉(f ∆ trfi R)+.×ti)+.×ti 
»	 ((f Q)+.×TI ∆ R)+⍉(⍉(f ∆ Q)+.×ti)+.×ti 
»	 ((f Q)+.×TI ∆ R)+⍉(⍉'i..j'val(f ∆ Q)∘.×ti)+.×ti 
»	 ((f Q)+.×TI ∆ R)+⍉('j..i'val(f ∆ Q)∘.×ti)+.×ti 
»	 ((f Q)+.×TI ∆ R)+⍉'j..ijk'val(f ∆ Q)∘.×ti∘.×ti 
»	 ((f Q)+.×TI ∆ R)+'-..j-i'val(f ∆ q)∘.×ti∘.×ti

Now we can replace TI ∆ R by its value from equation [23] above giving:

»	 ((f Q)+.×('i.jk.'val ti∘.×D2 R)-'.j-k.-i'val ti∘.×ti∘.×C2 Q)+'-..j-i'val(f ∆ Q)∘.×ti∘.×ti

Page of 34 50

As this expression is getting long, we'll label the three component parts and work on them individually:

	 x←(f Q)+.×'i.jk.'val ti∘.×D2 R 
	 y←(f Q)+.×'.j-k.-i'val ti∘.×ti∘.×C2 Q 
	 z←'-..j-i'''val(f ∆ Q)∘.×ti∘.×ti

Just to confirm:

	 ((F ∆ R)+y)comp x+z 
1

We can simplify x, y and z as:

	 x 
»	 'ii.jk.'val(f q)∘.×ti∘.×D2 r 
»	 '.jk.'val(F R)∘.×D2 R 
»	 'kj'val(F R)+.×⍉D2 R 
»	 (D2 R)+.×F R

	 y 
»	 '+.i-j.-+'val(f Q)∘.×ti∘.×ti∘.×C2 Q 
»	 '.i-j.-++'val ti∘.×ti∘.×(C2 Q)∘.×f Q 
»	 '.i-j.-'val ti∘.×ti∘.×(C2 Q)+.×f Q 
	 z 
»	 '.j-i-.'val ti∘.×ti∘.×f ∆ Q 
»	 '.i-j.-'val ti∘.×ti∘.×f ∆ Q

And we can rewrite the equivalence as:

	 (F ∆ R)-(D2 R)+.×F R ←→ '.i-j.-'val ti∘.×ti∘.×(f ∆ Q)-(C2 Q)+.×f Q

which shows that (f ∆ Q)-(C2 Q)+.×f Q transforms as a rank 2 covariant tensor. This forms the basis for the
definition of the covariant derivative operator for a covariant vector field:

	 ∆cov←{(⍺⍺ ∆ ⍵)+(-C2)ip ⍺⍺ ⍵} 	 [24]
...

Covariant derivative of a contravariant vector field

What if we had begun with a contravariant vector function f. What would its derivative be?

As f is contravariant it transforms to be F←T ip f∘trfi which we can differentiate:

	 F ∆ R 
»	 (T∘trfi)ip(f∘trfi)∆ R 
»	 ((T∘trfi)ip(f∘trfi ∆)r)+¯1 sh(1 sh(T∘trfi ∆)r)+.×f∘trfi r 
»	 (t+.×f∘trfi ∆ R)+¯1 sh(1 sh(T∘trfi ∆)r)+.×f Q 
»	 (t+.×f∘trfi ∆ R)+¯1 sh(1 sh(T∘trfi ∆)r)+.×f Q 
»	 (t+.×f∘trfi ∆ R)+¯1 sh(1 sh(T∘trfi ∆)r)+.×f Q 
»	 (t+.×f∘trfi ∆ R)+¯1 sh(1 sh(T ∆ Q)+.×ti)+.×f Q 
»	 (t+.×f∘trfi ∆ R)+¯1 sh('jki'val(T ∆ Q)+.×ti)+.×f Q 
»	 (t+.×f∘trfi ∆ R)+¯1 sh('jk..i'val(T ∆ Q)∘.×ti)+.×f Q 
»	 (t+.×f∘trfi ∆ R)+¯1 sh'j-..i-'val(T ∆ Q)∘.×ti∘.×f Q 
»	 (t+.×f∘trfi ∆ R)+'i-..j-'val(T ∆ Q)∘.×ti∘.×f Q 
»	 (t+.×(f ∆ Q)+.×ti)+'i-..j-'val(T ∆ Q)∘.×ti∘.×f Q

Page of 35 50

We can replace T ∆ Q with its equivalent -'*-.i*.k-j'val(TI ∆ R)∘.×t∘.×t∘.×t from equation [5] above:

»	 (t+.×(f ∆ Q)+.×ti)-'i-..j-'val('*-.i*.k-j'val(TI ∆ R)∘.×t∘.×t∘.×t)∘.×ti∘.×f Q 
»	 (t+.×(f ∆ Q)+.×ti)-'i-..j-'val'*-.i*.k-jlmn'val(TI ∆ R)∘.×t∘.×t∘.×t∘.×ti∘.×f Q

Now we can combine the two applications of val:

	 cix'i-..j-'merge'*-.i*.k-jlmn' 
.-*i.*=-∘=j∘

»	 (t+.×(f ∆ Q)+.×ti)-'.-*i.*=-∘=j∘'val(TI ∆ R)∘.×t∘.×t∘.×t∘.×ti∘.×f Q 
»	 (t+.×(f ∆ Q)+.×ti)-'i..-**==j-∘∘'val t∘.×(TI ∆ R)∘.×t∘.×ti∘.×t∘.×f Q 
»	 (t+.×(f ∆ Q)+.×ti)-'i-j-'val t+.×(TI ∆ R)+.×t+.×ti∘.×t+.×f Q 
»	 (t+.×(f ∆ Q)+.×ti)-'i-j-'val t+.×(TI ∆ R)∘.×F R

Substituting TI ∆ R as ('i.jk.'val ti∘.×D2 R)-'.j-k.-i'val ti∘.×ti∘.×C2 Q (from equation [23]
above), we have:

»	 (t+.×(f ∆ Q)+.×ti) 
	 -('i-j-'val t+.×('i.jk.'val ti∘.×D2 r)∘.×F R) 
	 -'i-j-'val t+.×('.j-k.-i'val ti∘.×ti∘.×C2 q)∘.×F R

As before, for brevity, we'll label the three component parts and work on them individually:

	 x←t+.×(f ∆ Q)+.×ti 
	 y←'i-j-'val t+.×('i.jk.'val ti∘.×D2 R)∘.×F R 
	 z←'i-j-'val t+.×('.j-k.-i'val ti∘.×ti∘.×C2 Q)∘.×F R

We can simplify y and z as:

	 y 
»	 'i-j-'val t+.×'i.jk.l'val ti∘.×(D2 R)∘.×F R 
»	 'i-j-'val'i.jk.l'val t+.×ti∘.×(D2 R)∘.×F R 
»	 'i-j-'val'i.jk.l'val(id⍴R)∘.×(D2 R)∘.×F R 
»	 'i.-j.-'val(id⍴R)∘.×(D2 R)∘.×F R 
»	 'i..j--'val(id⍴R)∘.×(⍉D2 R)∘.×F R 
»	 (⍉D2 R)+.×F R

	 z 
»	 'i-j-'val t+.×'.j-k.-il'val ti∘.×ti∘.×(C2 Q)∘.×F R 
»	 'i-j-'val t+.×'.j-ki-.l'val ti∘.×ti∘.×(⍉C2 Q)∘.×F R 
»	 'i-j-'val'i=.j-k=-.l'val t∘.×ti∘.×ti∘.×(⍉C2 Q)∘.×F R 
»	 'i*-∘.j*.-∘'val t∘.×ti∘.×ti∘.×(⍉C2 Q)∘.×F R 
»	 'i*.j*.'val t∘.×ti∘.×(⍉C2 Q)+.×ti+.×F R 
»	 'i*.j*.'val t∘.×ti∘.×(⍉C2 Q)+.×f Q 
»	 'i**.--.j'val t∘.×(⍉C2 Q)∘.×(f Q)∘.×t 
»	 t+.×((⍉C2 Q)+.×f Q)+.×ti

Now we have for the equivalence:

	 (F ∆ R)+(⍉D2 R)+.×F R ←→ t+.×((f ∆ Q)+(⍉C2 Q)+.×f Q)+.×ti

which shows that (f ∆ Q)+(⍉C2 Q)+.×f Q transforms as a rank 2 mixed tensor. This forms the basis for the def-
nition of the covariant derivative operator for a contravariant field:

	 ∆con←{(⍺⍺ ∆ ⍵)+(⍉C2)ip ⍺⍺ ⍵} 	 [25]
...

Page of 36 50

Covariant derivatives of matrix fields

Naturally, once we have an expression for the covariant derivative of a covariant vector field, we'll need to see
what this sort of analysis produces for the covariant derivative of a covariant matrix field. We could steel our-
selves and work through the analysis that produced equations [23] and [24], but this would be some labour. For-
tunately there is another way.

We start with the observation that a matrix field M can be formed as the sum of terms of the form u op v, where u
and v are vector functions (Dirac p.18):

	 M←(u0∘.×v0)+(u1∘.×v1)

And our starting point can then be (u op v)∆cov.

In order to expand this we'll assume that the following identity holds (relying on Dirac p. 18 who defines it that
way):

	 (u up v)∆cov Q ←→ (u op(v ∆cov)Q)+0 2 1⍉(u ∆cov)op v Q

We'll keep things brief and hopefully clearer with some simple defintions:

	 a←u q ⋄ b←v q ⋄ c←u ∆ q ⋄ d←v ∆ q ⋄ e←C2 q ⋄ uv←u op v

Then we have:

	 (u op(v ∆cov)Q)+0 2 1⍉(u ∆cov)op v Q 
»	 (a∘.×d-e+.×b)+0 2 1⍉(c-e+.×a)∘.×b 
»	 (uv ∆ Q)-(a∘.×e+.×b)+0 2 1⍉(e+.×a)∘.×b 
»	 (uv ∆ Q)-('ijk∘∘'val a∘.×e∘.×b)+0 2 1⍉'ij∘∘k'val e∘.×a∘.×b 
»	 (uv ∆ Q)-{('jk∘i∘'val ⍵)+'ik∘∘j'val ⍵}e∘.×a∘.×b

»	 (uv ∆ Q)+{('jk∘i∘'val ⍵)+'ik∘∘j'val ⍵}(-C2)op uv Q 	 [26]
.............................

We can do the same for the covariant derivative of an entirely contravariant matrix field producing:

	 (u op(v ∆con)Q)+0 2 1⍉(u ∆con)op v Q

»	 (uv ∆ Q)+{('jk∘i∘'val ⍵)+'ik∘∘j'val ⍵}(⍉C2)op uv Q 	 [27]
.............................

Mixed variance matrix fields come in two types – one with the two axes being covariant followed by contravari-
ant, and the other with the variances interchanged. Their covariant derivatives are:

	 (uv ∆ Q)+{('ik∘∘j'val(-C2)op uv Q)+'jk∘i∘'val ⍵}(⍉C2)op uv Q 	 [28]
...................

	 (uv ∆ Q)+{('ik∘∘j'val(⍉C2)op uv Q)+'jk∘i∘'val ⍵}(-C2)op uv Q 	 [29]
...................

Notice that the terms adjusting the ordinary derivative uv ∆ Q apply the same val transformations, but just to dif-
ferent arguments. For a covariant axis, the argument contains -C2; for a contravariant axis, the argument contains
⍉C2.

Of course, this is just the lead up to dealing with a definition for the covariant derivative able to take on any field.

The general covariant derivative

First we'll need a general way to form the index vectors that appear as left arguments to val. We can use:

	 ix←{a←(⍳⍵),(⍵,2)⍴⍵+0 1	 Index generator	  
	 b←id ⍵ 
	 ↓a,(b×⍵+1)+(~b)×(⍵,⍵)⍴⍳⍵}

Page of 37 50

This takes an argument of the rank of the field in question. Here are two examples:

	 cix¨ix 2

┌─────┬─────┐

│ik..j│jk.i.│

└─────┴─────┘

	 cix¨ix 3

┌──────┬──────┬──────┐

│il..jk│jl.i.k│kl.ij.│

└──────┴──────┴──────┘

Now we have all we need to put together an operator ⍙ that can handle any field. But, we will have to specify
which axes are covariant and which are contravariant – and that we'll do in a left argument. Here's the definition
for ⍙:

	 ⍙←{t←⍺⍺ ⍵ 
	 c←C2 ⍵ ⋄ c←(⊂-c∘.×t),⊂(⍉c)∘.×t 
	 (⍺⍺ ∆ ⍵)+⊃+/(ix⍴⍺)val¨c[⍺]} 	 [30]
..

⍙ is a dyadic operator. Its application to a function left argument produces a dyadic function. The left argument to
that derived function is a boolean indicating whether each axis is covariant (=0) or contravariant (=1); the right
argument is just a vector coordinates.

For comparison, here's the same result in Einstein notation (Sokolnikoff p. 86):

Note that Sokolnikoff's version does not reveal the order in which the r+s indices should appear. This puts the
result in doubt as there is no indication how to apply the necessary adjusting dyadic transforms.

Examples

We'll continue with our example at a point Q on the surface of a sphere. The relevant definitions for that are:

	 Q←sph P←3 4 12 
	 g←(⍉dsph)ip dsph 
	 gi←dsphi ip(⍉dsphi)∘sph 
	 C1←chr g ∆ 
	 C2←C1 ip gi

Page of 38 50

On the surface of this sphere, we'll define some functions to produce fields:

 u←{⍵*0.9 1 1.2}	 Vector field 
	 v←{3 1 4+⍵×2 7 1}	 ditto 
	 uv←u op v	 Matrix field 
	 phi←u ip v	 Scalar field 

psi←{+/⍵}	 Another scalar field

First we'll check that our definition for ⍙ does produce the correct value for its application to a covariant field:

	 (0 u ⍙ Q)comp(u ∆ Q)-C2 ip u Q 
1

We can do the same test, treating u as the associated contravariant field:

	 (1 u ⍙ Q)comp(u ∆ Q)+(C2 ip u)Q 
1

And then for the scalar field phi:

	 (⍬ phi ⍙ Q)comp phi ∆ Q 
1

For the matrix field uv there are four possibilities for the variance quality of the field: purely covariant (0 0),
mixed (either 0 1 or 1 0) or purely contravariant (1 1). These check with:

	 (0 0 uv ⍙ Q)comp(uv ∆ Q)+{('ik∘∘j'val ⍵)+'jk∘i∘'val ⍵}(-C2)op uv Q

1 
	 (0 1 uv ⍙ Q)comp(uv ∆ Q)+('ik∘∘j'val(-C2)op uv Q)+'jk∘i∘'val(⍉C2)op uv Q

1 
	 (1 0 uv ⍙ Q)comp(uv ∆ Q)+('ik∘∘j'val(⍉C2)op uv Q)+'jk∘i∘'val(-C2)op uv Q

1 
	 (1 1 uv ⍙ Q)comp(uv ∆ Q)+{('ik∘∘j'val ⍵)+'jk∘i∘'val ⍵}(⍉C2)op uv Q

1

Exploring the properties of the covariant derivative

We can now test out the covariant versions of identities made with the ordinary derivative ∆.

Addition

Let's start with the derivative of the sum of two functions. The rule for the ordinary derivative is:

	 (u+v)∆ q ←→ (u ∆ q)+v ∆ q

This carries over to the covariant derivative in the following way:

	 (⍬(phi+psi)⍙ q)comp(⍬ phi ⍙ q)+⍬ psi ⍙ q	 for a scalar field 
1 
	 (0(u+v)⍙ q)comp (0 u ⍙ q)+0 v ⍙ q	 for a covariant vector field 
1 
	 (1(u+v)⍙ q)comp (1 u ⍙ q)+1 v ⍙ q	 for a contravariant vector field 
1

In general, if var is the vector indicating the appropriate variance quality, the rule is:

	 var(u+v)⍙ q ←→ (var u ⍙ q)+var v ⍙ q 	 [31]
...

Page of 39 50

Multiplication

The rule for the ordinary derivative of the product of two functions is:

	 (u×v)∆ q ←→ ((u xp v ∆))+v xp u ∆)q

This holds just fine for scalar functions:

	 (⍬(phi×psi)⍙ q)comp ((phi q)xp ⍬ psi ⍙ q)+(psi q)xp ⍬ phi ⍙ q 
1

but, unfortunately, not for vector functions:

	 (0(u×v)⍙ q)comp ((u q)xp 0 v ⍙ q)+(0 u ⍙ q)xp v q 
0 
	 (1(u×v)⍙ q)comp ((u q)xp 1 v ⍙ q)+(1 u ⍙ q)xp v q 
0.111111

Composition

The rule for the ordinary derivative of a composition (the chain rule) is:

	 ((u∘v)∆ q) ←→ (u ∆ v q)+.×v ∆ q

But, no such luck with the comparable equation for a covariant derivative, unless the function is scalar:

	 (⍬(phi∘u)⍙ q)comp(⍬ phi ⍙ u q)+.×u ∆ q 
1 
	 (0(u∘v)⍙ q)comp (0 u ⍙ v q)+.×v ∆ q 
0

The metric tensor

The metric tensor behaves like a constant when derivatives are taken. This is because the derivative of the metric
tensor is zero. For example:

	 ⍪disp 0 0 g ⍙ q

┌──┐

│ 4.336808690E¯19 2.602085214E¯18 ¯3.469446952E¯18│

│ 1.301042607E¯18 ¯1.387778781E¯17 ¯5.421010862E¯20│

│¯1.734723476E¯18 ¯1.626303259E¯19 ¯1.387778781E¯17│

├──┤

│ 1.301042607E¯18 ¯1.387778781E¯17 ¯5.421010862E¯20│

│ 2.168404345E¯19 ¯1.734723476E¯18 ¯1.694065895E¯21│

│¯5.421010862E¯20 1.734723476E¯18 ¯4.336808690E¯19│

├──┤

│¯1.734723476E¯18 ¯1.626303259E¯19 ¯1.387778781E¯17│

│¯5.421010862E¯20 1.734723476E¯18 ¯4.336808690E¯19│

│ 0.000000000E0 ¯1.355252716E¯20 3.469446952E¯18│

└──┘

This means that the metric tensor may be moved outside derivative expressions, just like the product with a con-
stant.

Page of 40 50

Conclusion

I'm satisfied.

I set out here to get a better understanding of tensor calculus and have done so. But I only got here because I used
APL. Without APL, I could have gone through the standard texts, but always would have had some doubt. Have I
missed something? Glossed over something important? Of course, with APL, there do not have to be any doubts.
APL is executable. I can check with actual examples.

I've always been an admirer of Einstein. He managed to explain so much, so simply. And a good part of that was
his use of tensor notation. Who could argue with:

Rμν - 1/2gμνR = Yμν

for his law of gravitation in the presence of energy and matter. How he came up with this without executable con-
firmation, is beyond me. But he was special. He knew that the laws of physics, properly construed, had to be in-
dependent of the motion of the observer. And that lead to only one conclusion. The laws had to be expressed as
tensor equations in four dimensions. For Einstein, the rest was details. Difficult work, but still details.

Of course, there are others. A favourite of mine has always been Paul Dirac. A theoretical physicist, clearly well
versed in all the relevant mathematics, who achieve his fame with his theoretical formulation of quantum mechan-
ics. However, in 1975, well after he was properly acclaimed for his work in quantum mechanics, he published a
simple work with the title of "Theory of General Relativity". A mere 69 pages. But, it covered so much. Here's the
table of contents:

This is a masterpiece. And Dirac also liked his notation terse.

And that leads me to Iverson. His contribution to the world of thought, and of notation to express that, is stunning.
He stands with the masters.

Page of 41 50

I've often thought about "notation as a tool of thought". My take on this goes like this. Theories and thoughts form
in unusual ways. If we want to reflect on these later, perhaps to improve them, we'll probably need to write them
down. And that takes notation. If the notation facilitates that process, that's great. If the notation does more, per-
haps to suggest a pattern or relationship, that is a bonus. And APL has done that for me.

Equation [30] above is a bit special for me. This provides one straightforward structure for the evaluation of the
generalized covariant derivative. The dependence on variance comes down to the difference between -C2 and ⍉C2.
And, guess what, I've never seen this before in the texts. A gift delivered by APL.

Page of 42 50

Appendix A 
The Derivative Operator

Definition of the derivative operator

Here is the definition for a derivative operator ∆above:

	 ∆above←{ 
	 k←-r←⍴n←⍴⍵ 
	 x←(n,n)⍴⍵ 
	 dx←(n,n)⍴(,id n)\,d←0.000001×⍵+⍵=0 
	 pd←(⍺⍺⍤r⊢x+dx)-⍺⍺⍤r⊢x 
	 pd←pd÷⍤k⊢d 
	 pd{(⍋((⍳⍴⍴⍺)~⍵),⍵)⍉⍺}⍳r}

This is known as the derivative from above as its definition calls for the limit of (f x+dx)-f x as dx approaches
0. An alternative definition might use (f x)-f x-dx. This is known as the derivative from below. It's numerical
approximation is slightly different and is defined as:

	 ∆below←{ 
	 k←-r←⍴n←⍴⍵ 
	 x←(n,n)⍴⍵ 
	 dx←(n,n)⍴(,id n)\,d←0.000001×⍵+⍵=0 
	 pd←(⍺⍺⍤r⊢x)-⍺⍺⍤r⊢x-dx 
	 pd←pd÷⍤k⊢d 
	 pd{(⍋((⍳⍴⍴⍺)~⍵),⍵)⍉⍺}⍳r}

The definition for the derivative that we'll use is just the mean of these two values:

	 ∆←{0.5×(⍺⍺ ∆above ⍵)+⍺⍺ ∆below ⍵}

The rank of a derivative

The argument rank of the derivative of a function is just that of the function itself. This comes directly from the
definition of the derivative. This has a consequence for the definition of ∆ shown above.

In order to correctly model the derivative operator, we need to know the rank of the function to which it is to be
applied. This is necessary so that the shape of the data argument can be correctly broken up into its frame and
cells. For example, {⍵*2} is a scalar function. When its derivative is applied to a vector, it should produce a vec-
tor result – as the vector should be treated as a rank 1 frame of scalars. However, observe the following:

	 {⍵*2}∆ 2 3 4 
4 0 0 
0 6 0 
0 0 8

This is incorrect. Because our definition of ∆ is not aware of the rank of its function argument, the derived func-
tion produces surplus zeros. The correct result is obtained with:

	 {⍵*2}∆⍤0⊢2 3 4 
4 6 8

Page of 43 50

Regrettably, Dyalog APL does not provide a means to determine the rank of a function, so, we have to define ∆
assuming that there is no frame involved, but with the caveat:

If the argument rank s of the function f is less than that of the argument x, then the derivative f ∆
must be applied with rank s.

Numerical accuracy of ∆

The definition of ∆ is designed to be simple to understand and generally useful as a tool for verification of expres-
sions. However, it is a numerical approximation and it is not difficult to find examples that show up the approxi-
mation it makes.

Of particular importance in what follows, are second derivatives. In most cases, employing ∆ ∆ leads to unsatis-
factory results. That's why we make use of the analytic derivatives to minimize this problem. 

Page of 44 50

Appendix B  
Identities & the Derivative Rules

Identities

Iverson provides a table of useful identities at p. 350. These are presented below, together with some other equiv-
alents.

Iverson's 
Expression

 
Equivalents

 
Note

f¨(g¨h) 

f⊕(g⊕h) 
 

f⊕g∘h 
 

(f⊗g)∘h 
 

(f∘g)⍣¯1 

g 

⌹¨(f¨g) 

g

f∘g ∆

(f∘g)∘h 
f∘g∘h

(f ip g)ip h 
f ip g ip h 
((f+.×g)+.×h)

(f∘h)ip(g∘h) 
f ip g∘h 
(f+.×g)∘h

(f∘h)op(g∘h) 
f op g∘h 
(f∘.×g)∘h

(g⍣¯1)∘f⍣¯1 

f⍣¯1∘f∘g 
f∘f⍣¯1∘g

(⌹∘f)∘g 
⌹∘f∘g

⌹∘f ip f ip g

f ∆∘g ip(g ∆) 
(f ∆∘g+.×g ∆)

Associativity of composition. 

Associativity of the inner product operator. 
f, g and h must conform appropriately. 

Composition distributes over inner product. 
 

Composition distributes over outer product. 
 

Inverse of a composition. 
f and g are invertible rank 1 1 functions.

Inverse of inverse. 

Associativity of composition. 
f is rank 2 1, g is rank 1 1.

As ⌹∘f ip f is an identity matrix,

Derivative of a composition

Page of 45 50

Differentiability

Of APL's many functions, only a few are differentiable for any argument. One example that is differentiable
everywhere is the exponential function *.

A number of functions are only differentiable for certain domains of their argument. For example, the ceiling
function ⌈. Here's a portion of its graph:

It's clear from this that for some parts of the graph, there is a derivative. For example at 1.5, the graph is flat with
a derivative of 0. However, at every integer value, the function is not well-defined. Consider the graph for x←2. It
appears that the value of ⌈x is somewhere between 2 and 3 but we can't be sure of where. And as for the gradient;
it heads off to infinity – and that's a problem. Examine what happens:

	 ceiling←{⌈⍵} 
	 ceiling 1.5 1.9 2 2.1 4 
2 2 2 3 4 
	 ceiling ∆⍤0⊢ 1.5 1.9 2 2.1 4 
0 0 500000 0 250000

Lastly, there are some functions that are not differentable at all. The deal function {?⍵} comes to mind.

So, bearing this in mind, let's examine the derivatives of some APL functions.

Page of 46 50

1 2 3 4

1

2

3

4

{⌈⍵}

0

Scalar functions

Scalar functions are functions that take a scalar as an argument and return a scalar result. Their derivatives pro-
duce scalars. Here f and g are scalar functions; s is a scalar.

Name Definition Equivalent Note

Taylor expansion	

Sum	

Difference	

Product	

Quotient	

Composition	

Inverse	

f s+ds

(f+g)∆

(f-g)∆ s

(f×g)∆ s

(f÷g)∆ s

(f g)∆ s

fi ∆ s

(f s)+ds×f ∆ s

(f ∆+g ∆)s

(f ∆-g ∆)s

((f×g ∆)+g×f ∆)s

(((f ∆)-(f÷g)×g ∆)÷g)s

((f ∆ g)×g ∆)s

÷(f ∆ fi)s

ds←s×0.000001

fi←f⍣¯1

Constant 	

Linear 	

Negate 	

Signum 	

Reciprocal 	

Power 	

Exponential 	

Exponential 	

Natural Logarithm 	

Sine 	

Cosine 	

Tangent 	

Arcsine 	

Arccosine 	

Arctangent 	

Hyperbolic Sine 	

Hyperbolic Cosine 	

Hyperbolic Tangent 	

Inverse Hyperbolic Sine 	

Inverse Hyperbolic Cosine 	

Inverse Hyperbolic Tangent 	

{k}∆

{⍵}∆

{-⍵}∆

{×⍵}∆

{÷⍵}∆

{⍺*⍵}∆

{*⍵}∆

{⍺*⍵}∆

{⍟⍵}∆

{1○⍵}∆

{2○⍵}∆

{3○⍵}∆

{¯1○⍵}∆

{¯2○⍵}∆

{¯3○⍵}∆

{5○⍵}∆

{6○⍵}∆

{7○⍵}∆

{¯5○⍵}∆

{¯6○⍵}∆

{¯7○⍵}∆

{0}

{1}

{¯1}

{0}

{-÷⍵×⍵}

{⍵×⍺*⍵-1}

{*⍵}

{(⍟⍺)×⍺*⍵}

{÷⍵}

{2○⍵}

{-1○⍵}

{÷(2○⍵)*2}

{÷(1-⍵*2)*0.5}

{-÷(1-⍵*2)*0.5}

{÷1+⍵*2}

{6○⍵}

{5○⍵}

{÷(5○⍵)*2}

{÷(1+⍵*2)*0.5}

{÷((⍵*2)-1)*0.5}

{÷1-⍵*2}

k←3.142, for example

The derivative rules for some scalar functions

Page of 47 50

Vector Functions

Vector functions take a vector as an argument and return a vector result. Their derivatives produce matrices. In the
table below f and g are vector functions (that is, rank 1 1) and v is a vector. The following definitions are as-
sumed:

	 lm←{(⍳⍴⍵)∘.≥⍳⍴⍵}	 Lower mid array 
	 alt←{⍵×(⍴⍵)⍴1 ¯1}	 Alternating sign 

xp←{⍺×⍤(-(⍴⍴⍺)⌊⍴⍴⍵)⊢⍵} Extended product 
sh←{(⍺⌽⍳⍴⍴⍵)⍉⍵}	 Shift axes

 

Note that the derivative of {÷\⍵} is expected to fail with a "Divide by zero" error if there is a 0 in the vector ar-
gument. Unless, of course, there is just one 0 and it is in the first position. Unfortunately, the expression for the
derivative offered here, fails in this case when it should give a result.

	 {÷\⍵}∆ 0 3 7 
1 0 0 
0.333333 0 0 
2.33333 0 0 
	 {(÷\⍵)×⍤¯1⊢(alt∘lm ⍵)÷⍤1⊢⍵}0 3 7 
DOMAIN ERROR: Divide by zero

Name Definition Equivalent Note

Taylor expansion 	

Sum 	

Difference 	

Product

Quotient 	

Outer product 	

Composition 	

Inverse 	

Matrix multiplication 	

f v+dv

(f+g)∆ v

(f-g)∆ v

(f×g)∆ v

(f÷g)∆ v

(f∘.×g)∆ v

(f g)∆ v

fi ∆ v

f ip g ∆ v

(f v)+(f ∆ v)+.×dv

(f ∆+g ∆)v

(f ∆-g ∆)v

((f xp g ∆)+g xp f ∆)v

(((f ∆)-(f÷g)xp g ∆)xp(÷g))v

((f∘.×g ∆)+0 2 1⍉f ∆∘.×g)v

((f ∆ g)+.×g ∆)v

⌹(f ∆ fi)v

(f ip(g ∆)v)+(f ∆)ip g v

dv←v×0.000001

fi←f⍣¯1

Reverse 	

Transpose 	

Enclose 	

Plus-scan 	

Minus-scan 	

Times-scan 	

Divide-scan 	

{⌽⍵}∆

{⍉⍵}∆

{⊂⍵}∆

{+\⍵}∆

{-\⍵}∆

{×\⍵}∆

{÷\⍵}∆

{⌽id⍴⍵}

{id⍴⍵}

{⊂⍤1⊢id⍴⍵}

{lm ⍵}

{alt∘lm ⍵}

{(×\⍵)×⍤¯1⊢(lm ⍵)÷⍤1⊢⍵}

{(÷\⍵)×⍤¯1⊢(alt∘lm ⍵)÷⍤1⊢⍵}

The derivative rules for some vector functions

Page of 48 50

Reductions

Reductions produce rank 0 1 functions. That is each vector within the argument's frame is reduced to a scalar. In
effect, they return results with one fewer dimension than that of the argument – except for scalars which return
their argument unchanged.

This means that the derivative of a reduction produces a result with the same shape as that of its argument.

Here are the derivatives of four commonly encountered reductions:

 

Some care must be taken with max-reduce {⌈/⍵} and min-reduce {⌊/⍵}. This can be seen, as follows:

x←5 3 2 5 4 
	 {⌈/⍵}∆above x 
1 0 0 1 0 
	 {⌈/⍵}∆below x 
0 0 0 0 0 
	 {⌈/⍵}∆ x 
0.5 0 0 0.5 0

A similar difficulty arises for {⌊/⍵}. Of course, the reason stems from the fact that ⌈ and ⌊ are not differentiable
functions everywhere; likewise {×⍵}, {∨/⍵} and {∧/⍵} and a number of others.

Name Definition Equivalent Note

Plus-reduce

Minus-reduce 	

Times-reduce 

Divide-reduce

{+/⍵}∆⍤1

{-/⍵}∆⍤1

{×/⍵}∆⍤1 

{÷/⍵}∆⍤1

{(⍴⍵)⍴1}⍤1

{alt(⍴⍵)⍴1}⍤1

{×/⍵*⍤1⊢~id⍴⍵}⍤1 
{(×/⍵)÷⍵}⍤1

{(÷/⍵)÷alt ⍵}⍤1

 

if ~0∊⍵

The derivatives of some reductions

Page of 49 50

References

[0]	 “The Derivative Operator” K.E. Iverson, Proceedings of APL79: ACM 0-89791-005-2/79/0500-0347.

[1]	 “The Derivative Revisited” M. Powell, May 2020 
https://aplwiki.com/wiki/File:1_The_Derivative_Revisited.pdf

[2]	 “The Derivative Rules” M. Powell, May 2020 
https://aplwiki.com/wiki/File:2_The_Derivative_Rules.pdf

[3]	 "Einstein Notation", https://en.wikipedia.org/wiki/Einstein_notation

[4]	 “Tensor Calculus” J.L. Synge & A. Schild, Dover Publications, 1949.

[5]	 "General Theory of Relativity" P.A.M. Dirac, Princeton Landmarks in Physics, 1996

[6]	 "Tensor Analysis, Theory & Applications" I S Sokolnikoff, John Wiley & Sons, Inc. 1951

Page of 50 50

	Tensors in APL A Notebook
	Introduction
	The APL environment
	Rank

	Some useful definitions
	Utility functions
	Comparing arrays

	Spaces & Fields
	The Windy website
	Spaces and Fields
	Making a measurement
	The Sphere
	Spherical coordinates
	Cylindical coordinates
	The twisted space
	Analytic derivatives
	Conventions

	Tensors
	What is a tensor?
	Why are tensors important?
	Einstein notation
	APL operations with tensors
	Tensor value
	The indices for val
	Transpositions
	Contractions and dummy indices
	Successive applications of val
	Merging index vectors
	Derivative of val
	Associativity of val
	Inner and outer product

	Useful relationships between trf and trfi
	Exercise

	Variance
	Invariance
	Contravariance
	The differential element
	Transformation of the differential element
	Definition
	Taking two steps

	Covariance
	Transformation of the gradient of a function
	Definition

	Higher rank tensors
	Definitions
	Rank 3 and higher

	Mixed tensors
	Alternative forms

	Associativity of tensor transformations
	Contravariant transformations
	Covariant transformations

	The Metric Tensor
	Distance
	Transformation of the distance
	Definition of the metric tensor
	The fundamental tensors
	Raising and lowering indices
	Testing the metric's tensor character

	The Covariant Derivative Operator
	Christoffel symbols
	The derivative of the metric tensor
	Transformation of the Christoffel symbols
	Transformation of C1
	(1) The derivative of h
	(2) The Christoffel symbol for h
	Transformation of C2

	Covariant derivative of a covariant vector field
	Covariant derivative of a contravariant vector field
	Covariant derivatives of matrix fields
	The general covariant derivative
	Examples
	Exploring the properties of the covariant derivative
	Addition
	Multiplication
	Composition
	The metric tensor

	Conclusion

	Appendix A The Derivative Operator
	Definition of the derivative operator
	The rank of a derivative
	Numerical accuracy of ∆

	Appendix B Identities & the Derivative Rules
	Identities
	Differentiability
	Scalar functions
	Vector Functions
	Reductions

	References

