
Machine Learning, 

An Interactive Approach

Introduction
Machine learning is about estimating the parameters of a system. Very often, if you're studying this field, the 
theory is expressed in conventional mathematical notation and the computer execution is shown in Python.

At times, understanding the theory may be difficult and you'd like to get help from your computer. The snag 
is that you will need to translate ∑ summations, subscripts and ∂ derivatives into Python code. Not an in-
surmountable challenge, but certainly a distraction from the task at hand. That's problem number one.

Faced with something that's only partially understood, you may turn to other sources. Perhaps a different 
author can resolve the difficulty? But this is where the second problem arises: you're likely to be faced with 
different notation. 

Isn't it better to have one notation, written and understood by all authors and directly (as in copy and paste) 
executable on a computer? That's exactly what APL offers.

This tutorial takes machine learning as its example. It explores the pattern recognition model for handwritten 
digits using data from the Modified National Institute of Standards and Technology database. This tutorial 
focuses on deriving the analytic gradients in APL and establishing them as part of the back propagation algo-
rithm. A following tutorial [3] uses these results to conduct a full model estimation interactively.

The APL environment
Why APL? Because it is a rich language ideally suited to the manipulation of matrices and higher order ar-
rays. It is mature, stable, well documented and well understood. It's also interactive, which means that you 
can break a big problem down into smaller steps and examine what's happening along the way.

All of the text in the APL385 Unicode font is executable in APL. The particular APL used here is Dyalog 
APL 17.1 with:

 ⎕io←0 

 ⎕pp←6 

 ⎕rl←16807 

 ]boxing on 

Dyalog APL is freely available for non-commercial use at www.dyalog.com.

Page  of 1 24

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://www.dyalog.com


Shape analysis
It's useful to take an expression and work though its functional happenings to determine the shape of its re-
sult. Included here is an informal technique to record the steps in this process. It requires a convention.

If text is in red, it should be read (in APL) as "an object of shape ...".

For example:

 3×2 3 4 A scalar multiplying a rank 3 object 
2 3 4 results in a rank 3 object of the same shape.
 (2 3 4⍴6){⍺∘.×⍵}⍤¯2⊢2 3 5 6⍴7 

» 2 3 4{⍺∘.×⍵}⍤¯2⊢2 3 5 6 

» 2 3,(4∘.×5 6) Outer products in a rank 2 frame. 
2 3 4 5 6 

Definitions
This tutorial makes use of a number of utility functions. These are defined here with brief comment.

num←{×/⍴⍵} Number 
sum←{+/,⍵} Sum 

mean←{(sum÷num)⍵} Mean 
sop←{+/,⍺×⍵} Sum of product 
ssq←{sop⍨⍵} Sum of squares 
rnd←{⍺×⌊0.5+⍵÷⍺} Round 
image←{28 28⍴(⊂⍵>0.5)⌷' *'} Display an image sample
disp←{⊂⍤2⊢⍵} Display higher rank array 
comp←{a b←∊¨⍵ ⋄ mean 0=0.99 1.01⍸a÷b+2×a×b=0} Compare two similar values 
timer←{∆∆j←1⌷⎕ai ⋄ ∆∆k←⍎⍵ ⋄ 0.001×∆∆j-⍨1⌷⎕ai} Execution time in seconds 
cells←{⊂⍤⍺⊢⍵} All the ⍺-cells of ⍵ 
id←{(⍵,⍵)⍴1,(×/⍵)⍴0} Identity function 
diag←{s←⍴⍵ ⋄ (s,s)⍴(,id s)\⍵} Diagonalize a vector 
rscan←{1≡≢⍵:⍵ ⋄ (⊂(⊃⍵)⍺⍺⊃t),t←∇ 1↓⍵} Reverse scan 
mp←{(,⍤⍺⍺⊢⍺)+.×,[⍺⍺↑⍳⍴⍴⍵]⍵} Extended matrix product 
tip←{⍺ sop⍤((⍴⍴⍺)⌊⍴⍴⍵)⊢⍵} Total inner product 
sh←{(⍺⌽⍳⍴⍴⍵)⍉⍵} Shift axes to the right 

Random numbers
In various places, values are chosen from a uniform distribution. The seed for the random number generator 
is set initially and at several other places along the way. If you follow along, but repeat or omit some state-
ments, you may find that your random values differ slightly.

Page  of 2 24



Recognizing Handwritten Digits 

The model discussed here uses the training and test data from the Modified National Institute of Standards 
and Technology ("MNIST") database (see Appendix C for a source of the data) to make predictions of 
handwritten digits 0-9 each provided as a 28 by 28 bitmap. Commonly, a prediction is made for each sample 
in the input, by applying several matrix transforms resulting in a vector with 10 values. The result is a bit 
like a probability distribution and the index of the largest value is taken to be the best guess for the input. 
Usually the transformations are performed with rank 2 matrices. The challenging task is the learning part, 
the estimation of the transformation matrices.

The images to be used are kept as a matrix, TrainingImages, of shape 784 60000 with each column holding 
the 28 by 28 pixel intensity values (floating point 0 to 1) for a single image. The digit corresponding to each 
column of TrainingImages is kept as a boolean of length 10 in the corresponding column of Training-
Labels.

 ⍴¨TrainingImages TrainingLabels  
┌─────────┬────────┐ 
│784 60000│10 60000│ 
└─────────┴────────┘ 

 TrainingImages TestImages÷←255 

Here's an image from this database.

 ⊂image 999⌷⍤1⊢TrainingImages 
┌────────────────────────────┐ 
│                            │ 
│                            │ 
│                    **      │ 
│                    **      │ 
│                   ***      │ 
│                  ***       │ 
│                 ***        │ 
│                ***         │ 
│               ***          │ 
│              ***           │ 
│              **            │ 
│            ****            │ 
│           ****             │ 
│           **   ****        │ 
│          ***  ******       │ 
│         ***  *** **        │ 
│        *** **** ***        │ 
│        **  **  ***         │ 
│        ** *** ***          │ 
│       *** ******           │ 
│        ********            │ 
│         ****               │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
└────────────────────────────┘ 

Page  of 3 24



The model
To get started, we'll use a model with an input layer, one intermediate layer and an output layer. The input 
layer is a vector of 784 black and white pixel intensities on a scale from 0 to 1. The intermediate layer is a 
vector of length 16 and the output layer is a vector of length 10.

Figure 1

The transition between layers incorporates both biases and an activation function:

tf←{activate ⍺+.×1⍪⍵} Transition function 

The intermediate layer is calculated from the input layer by intermediate←p0 tf input where p0 is a tran-
sition matrix of shape 16 785. The output layer is produced from the intermediate layer in a similar way 
with output←p1 tf intermediate  where p1 is a transition matrix of shape 10 17.

A commonly used activation function is the sigmoid function. (This is just one of several possibilities. Ap-
pendix B provides definitions and derivatives for nine of the most common.)

sigmoid←{÷1+*-⍵} 1 / 1 + e-x 
dsigmoid←{{⍵×1-⍵}sigmoid ⍵} It's derivative 

The target is a boolean vector of length 10 with a single 1 marking the target digit.

Here's an example of the model acting on a single sample:

 input←TrainingImages[;999] 

 target←TrainingLabels[;999] 

 activate←sigmoid 

 p0←?16 785⍴0 First transition matrix 
 p1←?10 17⍴0 Second transition matrix 
 ⍴output←p1 tf p0 tf input 

10 

A simple way to record the structure of a network is to just record the number of items in each of the layers. 
For the network in Figure 1, this would be:

 structure←10 16 784 

Page  of 4 24

Input	Intermediate	
Layer

Output	Target	
Values



Then we can generate initial values for the transition matrix parameters with:

 ⍴¨p1 p0←(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

┌─────┬──────┐ 
│10 17│16 785│ 
└─────┴──────┘ 

A convenient way to calculate the output is with the feed forward function:

ff←{⊃tf/⍵} Feed forward

And, if we need to retain the values in all the layers, we can do so with:

lff←{tf rscan ⍵} Layered feed forward
 ⍴ff p1 p0 input 

10 

 ⍴¨lff p1 p0 input 
┌──┬──┬───┐ 
│10│16│784│ 
└──┴──┴───┘ 

This type of model is known as a model with fully connected layers.

Objective functions
Estimation of the model parameters requires the definition of an objective function and a variational proce-
dure to iteratively adjust the parameters to minimize the value of that objective function. A number of objec-
tive functions are commonly in use. We'll consider the two most popular, least squares and cross entropy. 
Both are defined in terms of the target values and the feed forward output from the model:

The least squares objective is:

leastsquares←{ssq target-ff ⍵,⊂input} 

The cross entropy objective is:

cren←{(⍺×⍟⍵)+(1-⍺)×⍟1-⍵} 

crossentropy←{-sum target∘cren ff ⍵,⊂input} 

For example:

 target←TrainingLabels[;999] 

 input←TrainingImages[;999] 

 (leastsquares,crossentropy)p1 p0 

8.99637 77.8501 

Measuring the closeness of fit
How do we measure the closeness of fit between the predicted values and the targets? Let's look at the sort 
of values we are working with so far:

 output←ff p1 p0 input 

 2 10⍴target,output 
0        0        0        0        0        0       1       0       0       0 
0.999838 0.999861 0.999761 0.999946 0.999872 0.99975 0.99994 0.99965 0.99964 0.999868 

Page  of 5 24



The target values are a boolean vector with a single 1 positioned to indicate the digit. The output values 
have been coerced by the activate function to be between 0 and 1 but are all disappointingly close to the 
upper limit. The reason for this is that the matrix multiplication by p1 or p0 adds up lots of small contribu-
tions to make a large value. activate then scales this to be close to 1.

It would be helpful to choose smaller initial values for p1 and p0. There are many ways to do this but simply 
dividing by the number of elements contributing to each layer works quite well:

 p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 output←ff p1 p0 input 

 2 10⍴target,output 
0        0        0        0       0        0        1        0        0        0 
0.578667 0.576268 0.562872 0.57146 0.566322 0.554667 0.566124 0.574293 0.577999 0.561077 

 0.01 rnd target-ff p1 p0 input 

¯0.58 ¯0.58 ¯0.56 ¯0.57 ¯0.57 ¯0.55 0.43 ¯0.57 ¯0.58 ¯0.5 

 (leastsquares,crossentropy)p1 p0 

3.10566 8.1514 

Adjusting the parameters
In order to improve the accuracy of a network's predictions we need to reduce the value of the objective 
function. Usually this means using the gradient of the objective function with respect to the parameters.

We're looking for the gradient of the objective function with respect to the two transition matrices p1 and p0. 
This means that we must calculate gradients separately for p1 and p0 and then reassemble the results. We 
can do the calculations as a numeric approximation (using the ∆ operator defined below) with:

 ⍴g0←{obj p1 ⍵}∆ p0 

16 785 

 ⍴g1←{obj ⍵ p0}∆ p1 

10 17 

Once we have calculated the gradient, we are in a position to adjust the parameters. The technique we will 
use takes a step in the direction of the gradient in such a way that a reduction in the obj function is guaran-
teed. Here's how this works. Consider the first order Taylor expansion of a function f about a point x. The 
function f returns a scalar result for a vector argument and its derivative f ∆ x will return a vector of the 
same length as x. The value of f at a nearby point x+dx, where dx is small, is given by:

  f x+dx  ←→  (f x) + dx+.×f ∆ x 

If we choose a value for dx, small relative to x, and of the form -k×f ∆ x, with k>0, then the change in val-
ue of f is of the form -k×v+.×v which is guaranteed to be negative.

Page  of 6 24



Numeric Approximation 
of the Gradient 

Frames and cells
The result of a function f is, in general, made up of a frame and individual results. Let's label the shapes of 
these parts as fr and sir. If f is of rank k, we can determine fr and sir for an argument x as follows:

 fr←⍴c←k cells x 

 sir←⍴⊃f¨c 

Let's follow this through with an example:

 f←{+/⍵} ⋄ k←1 ⋄ x←?2 4 3⍴9 

 ⊣c←k cells x  Break up x into cells of rank k 
┌─────┬─────┬─────┬─────┐ 
│6 6 3│6 5 7│0 3 8│0 8 7│ 
├─────┼─────┼─────┼─────┤ 
│5 1 7│4 6 4│7 0 6│6 1 6│ 
└─────┴─────┴─────┴─────┘ 

 f¨c 
15 18 11 15 
13 14 13 13 

The function derived by the derivative operator behaves in exactly the same way. It has the same rank as that 
of the original function. However, as it is a derivative, the individual results produced have more structure – 
the values being the sensitivity of the function's result to changes in the elements of the values in each k-cell. 
Let's use a different function g with the unchanged values for x and c to illustrate:

 g←{⍵×+/⍵} 

 dg←{(⍵∘.+0×⍵)+(+/⍵)×id⍴⍵} dg is the derivative of g 
 k←1 g and dg are both rank 1 functions 
 ⊣r←dg¨c 
┌────────┬────────┬────────┬────────┐ 
│21  6  6│24  6  6│11  0  0│15  0  0│ 
│ 6 21  6│ 5 23  5│ 3 14  3│ 8 23  8│ 
│ 3  3 18│ 7  7 25│ 8  8 19│ 7  7 22│ 
├────────┼────────┼────────┼────────┤ 
│18  5  5│18  4  4│20  7  7│19  6  6│ 
│ 1 14  1│ 6 20  6│ 0 13  0│ 1 14  1│ 
│ 7  7 20│ 4  4 18│ 6  6 19│ 6  6 19│ 
└────────┴────────┴────────┴────────┘ 

The shape of each individual result is now a matrix. The shape of the overall result can be thought of as three 
pieces joined together: the shape of the frame, the shape of the function g applied to an individual cell and 
the shape of the individual cell itself. That is:

 ⍴↑r 

2 4 3 3 

 (⍴c),(⍴g⊃c),⍴⊃c 

2 4 3 3 

Page  of 7 24



The numeric derivative operator
An operator for the derivative, ∆, is discussed in [0] and [1]. We'll use that definition here.

The ∆ operator takes a function as its left argument, producing a derived function. The result is formed by 
applying the derived function to the right argument, which is expected to be an unboxed array.

This definition comes with a caveat. It expects to be used with arguments that do not exceed the rank of its 
function left argument. If a situation arises where the rank of the argument does exceed that of the function, 
then ∆ should be applied to cells of the argument with the rank ⍤ operator.

Performance of the numeric derivative ∆
We could dive in and attempt calculations for the gradients (g0 and g1) using ∆ for a large number of sam-
ples. But this runs into a problem: there are many parameters. p0 has 16×785 and p1 has 10×17 – 12730 in 
all. The derivative with respect to p0 is an array of shape 16 785. Each element of this array requires, at 
minimum, one execution of the ff function. If ff takes any appreciable time to execute, and it does with 
60000 training samples available, then the gradient calculation will be far too slow. Here's a timing of one 
execution of ff with the full set of training data (on a late 2014 iMac):

 timer'ff p1 p0 TrainingImages' 

0.632 

Even with APL's fast matrix operations and lots of memory, the calculation of a single gradient numerically 
with respect to p0 using all of the training data is going to take something like 12730×0.632 seconds, more 
than two hours. And then we expect to include this in an iterative search algorithm. A most unpleasant 
prospect.

Fortunately, it's possible to simplify the differentiations analytically using the derivative rules [0] and this 
can reduce the computation time significantly.

r←(f ∆)x;c;p;q;dx;d;j;n;sf;sx;t 

 ⍝ Derivative of function f at x. 

 ⍝ Assumes that the application of f to x does not produce a frame. 

 ⍝ Coding comments: 

 ⍝   Uses a loop to reduce memory usage. 

 ⍝   Careless regard by f for the locals used here could be fatal. 

 sf←⍴p←f x ⋄ sx←⍴x ⋄ dx←0.000001×{⍵+⍵=0}x←,x 

 r←(×/sx,sf)⍴p ⋄ c←0 ⋄ j←0 

 :While c<⍴dx 

     q←x ⋄ d←c⌷dx ⋄ (c⌷q)+←d 

     n←⍴t←,((f sx⍴q)-p)÷d ⋄ r[j+⍳n]←t 

     c+←1 ⋄ j+←n 

 :EndWhile 

 r←(sx,sf)⍴r ⋄ r←((⍴sf)⌽⍳⍴⍴r)⍉r

Page  of 8 24



The Analytic Gradients 

The two layer model
Let's start looking at the simplest case. We'll assume that we're using a cross entropy objective function with 
just an input and output layer, a sigmoid activation function and a single sample.

 ⎕rl←16807 

 obj←crossentropy ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 structure←10 784 

 ⍴p←⊃(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

10 785 

 batch←?60000 

 ⍴input←TrainingImages[;batch] 

784 

 ⍴target←TrainingLabels[;batch] 

10 

 obj⊂p 

7.1514 

The gradient
The derivative of the cross entropy objective function with respect to p is:

 g←{obj⊂⍵}∆ p 

» {-sum target∘cren ff ⍵ input}∆ p  [0] ...................................................

This is a derivative of a composition of the functions {-sum ⍵} and {target∘cren ff ⍵ input}. Writing 
a←ff p input this may be expanded as:

» (-sum ∆ target∘cren a)+.×{target∘cren ff ⍵ input}∆ p 

As the derivative of sum is {(⍴⍵)⍴1}, this becomes:

» (-(⍴target)⍴1)+.×{target∘cren ff ⍵ input}∆ p 

» -+⌿{target∘cren ff ⍵ input}∆ p 

Expanding this as the derivative of the composition of {target∘cren ⍵} and {ff ⍵ input}, we get:

» (-+⌿(target∘cren ∆ a)+.×{ff ⍵ input}∆ p 

» (-+⌿({(target×⍟⍵)+(1-target)×⍟1-⍵}∆ a)+.×{ff ⍵ input}∆ p 

We can simplify this by replacing +⌿{(target×⍟⍵)+(1-target)×⍟1-⍵}∆ a with its analytic derivative 
(target-a)÷a×1-a.

» ((a-target)÷a×1-a)+.×{ff ⍵ input}∆ p Cross entropy 

Note that, if we had chosen leastsquares as the objective, we would have arrived at a slightly different 
expression for the gradient.

 (2×a-target)+.×{ff ⍵ input}∆ p Least squares 

Page  of 9 24



With either objective, the left hand term is a constant. For simplicity let's call this R with the understanding 
that it has a different definition depending on the choice of objective.

» R+.×{⍵ tf input}∆ p   [1] ...............................................................

» R+.×{activate ⍵+.×1⍪input}∆ p 

Expanding the derivative as a composition, with z←p+.×1⍪input, we have:

» R+.×(activate ∆ z)+.×{⍵+.×1⍪input}∆ p 

Changing the order of execution of the inner products: 

» (R+.×activate ∆ z)+.×{⍵+.×1⍪input}∆ p 

     10      10 10          10 10 785 

As we have assumed rank 0 activation functions, the term activate ∆ z for a vector argument z is a diago-
nal matrix. This makes it possible to replace R+.×activate ∆ z with R×dactivate z:

» (R×dactivate z)+.×{⍵+.×1⍪input}∆ p   [2] ................................................

     10     10           10 10 785 

The right hand term {⍵+.×1⍪input}∆ p is the derivative of a matrix product of {⍵} and the constant 1⍪in-
put. We can expand this with (f+.×g)∆ ←→ {¯2 sh(2 sh f ∆ ⍵)+.×g ⍵} giving:

» (R×dactivate z)+.×¯2 sh(2 sh id⍴p)+.×1⍪input 

» (R×dactivate z)+.×¯2 sh(id⍴p)+.×1⍪input 

The right hand term ¯2 sh(id⍴p)+.×1⍪input is 10 10 785. Because of its size, it's a little hard to display. 
Let's work with a smaller example:

 a←1 4 6 ⋄ b←3 2 6 1 

 disp ¯2 sh(id 3 4)+.×a 
┌───────┬───────┬───────┐ 
│3 2 6 1│0 0 0 0│0 0 0 0│ 
│0 0 0 0│3 2 6 1│0 0 0 0│ 
│0 0 0 0│0 0 0 0│3 2 6 1│ 
└───────┴───────┴───────┘ 

It's clear that effect of this expression is to produce 3 copies of a 3 by 4 array. Each copy has the right argu-
ment as a single row in the array with the rest of the elements being 0. When this used in the inner product 
with a, it produces:

 a+.×¯2 sh(id 3 4)+.×b 
 3  2  6 1 
12  8 24 4 
18 12 36 6 

which is nothing more than a∘.×b. Using this, we have finally:

» (R×dactivate z)∘.×1⍪input   [3] .........................................................

Page  of 10 24



Back propagation
We can follow the path through these calculations, as follows:

 

On the left we have the feed forward section. The input is transformed by the parameter matrix (which in-
cludes biases) to produce weighted inputs (often labelled as z). Each weighted input is in turn transformed 
with the activate function to produce an activation (often labelled as a). For a vector input, the weighted 
input and activation are also vectors. If there are more layers, a and z are subscripted. The final activation 
value is the output of the model.

On the right is the back propagation section. This shows how the gradients are calculated from values al-
ready calculated during the feed forward section. The error term e is derived in part from the similar value 
one layer up the chain: e is derived from R. That's why this is called back propagation. Note that once the 
error value is known, calculation of the gradient g is straightforward.

Including a hidden layer
We can extend the model to include an additional layer with, for example:

 structure←10 16 784 

 ⍴¨p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 
┌─────┬──────┐ 
│10 17│16 785│ 
└─────┴──────┘ 

Now that we have three layers in total, there are two parameter matrices and two gradients. The output of the 
model is given by:

 ⍴ff p1 p0 input 

10 

The definitions of the objective functions leastsquares and crossentropy are unchanged:

 (leastsquares,crossentropy)p1 p0 

3.06855 8.07564 

The two gradients are now {obj ⍵ p0}∆ p1 (the p1 gradient) and {obj p1 ⍵}∆ p0 (the p0 gradient).

Page  of 11 24

input g←e∘.×1,input

Fe
ed

 F
or

w
ar

d
Back Propagate

R←(a-target)÷a×1-a 
or 
R←2×a-target 

a←activate z

z←p+.×1,input e←R×dactivate z



The p1 gradient

The p1 gradient is straightforward, requiring only a revision to the value for its input. It is:

 a1←p1 tf a0←p0 tf input 

 R←(a1-target)÷a1×1-a1 

 g1←{obj ⍵ p0}∆ p1 

» (R×dactivate p1+.×1⍪a0)∘.×1⍪a0 

» (R×dactivate z1)∘.×1⍪a0 with z1←p1+.×1⍪a0 

The p0 gradient

The derivative of the objective function with respect to p0 is:

 g0←{obj p1 ⍵}∆ p0 

» {-sum target∘cren ff p1 ⍵ input}∆ p0  [4] ...............................................

The simplification of this equation first follows the steps used in equations [0] and [1] above:

» R+.×{p1 tf ⍵ tf input}∆ p0 

    10       10 16 785 

This is a derivative of a composition of {p1 tf ⍵} and {⍵ tf input}. The {⍵ tf input} function works 
with matrices, producing vectors for use by {p1 tf ⍵}. This means that {p1 tf ⍵} is of rank 1 and {⍵ tf 
input} is of rank 2. The expression may be expanded with (f g)∆ ←→ (f ∆ g)(1 mp)g ∆. We then have:

» R+.×({p1 tf ⍵}∆ a0)+.×{⍵ tf input}∆ p0 

» R+.×({activate p1+.×1⍪⍵}∆ a0)+.×{⍵ tf input}∆ p0 

    10           10 16                 16 16 785 

Expanding the {activate p1+.×1⍪⍵}∆ a0 term as the derivative of the composition of {activate ⍵} and 
{p1+.×1⍪⍵}, we have:

» R+.×(activate ∆ z1)+.×({p1+.×1⍪⍵}∆ a0)+.×{⍵ tf input}∆ p0 

    10       10 10             10 16            16 16 785 

We can combine the first two terms with the same justification as was made for equation [2] above:

» (R×dactivate z1)+.×({p1+.×1⍪⍵}∆ a0)+.×{⍵ tf input}∆ p0 

          10                10 16            16 16 785 

The middle term {p1+.×1⍪⍵}∆ a0 can be simplified by noting that it is equivalent to {p[0;]+(0 
1↓p1)+.×⍵}∆ a0, which just becomes 0 1↓p1.

» (R×dactivate z1)+.×(0 1↓p1)+.×{⍵ tf input}∆ p0 

          10             10 16        16 16 785 

We've seen the right hand term before. It was dealt with in the discussion of equation [2] above. Drawing on 
those results, the derivative expression becomes, with z0←p0+.×1⍪input :

» (((R×dactivate z1)+.×0 1↓p1)×dactivate z0)∘.×1⍪input   [5] ..............................

Page  of 12 24



A second hidden layer
The model we've looked at so far has three layers, corresponding to two transition matrices, p1 and p0. What 
would the gradients look like if we had a fourth layer with a new transition matrix p2? Without going 
through the analysis, here's what these three gradients are:

 structure←10 5 16 784 

 p2 p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 a0←activate z0←p0+.×1⍪input 

 a1←activate z1←p1+.×1⍪a0 

 a2←activate z2←p2+.×1⍪a1 

 R←(a2-target)÷a2×1-a2 

 g0←{obj p2 p1 ⍵}∆ p0 

» ((((R×dactivate z2)+.×0 1↓p2)×dactivate z1)+.×0 1↓p1)×dactivate z0)∘.×1⍪input   [6] .....

 g1←{obj p2 ⍵ p0}∆ p1 

» (((R×dactivate z2)+.×0 1↓p2)×dactivate z1)∘.×1⍪a0   [7] .................................

 g2←{obj ⍵ p1 p0}∆ p2 

» (R×dactivate z2)∘.×1⍪a1   [8] ...........................................................

It helps to see the relationships between these equations in a diagram. The figure below draws on the de-
scription by Nielsen in [2] and shows how this works.

Page  of 13 24

input

a0←activate z0

a1←activate z1

e2←R×dactivate z2

g1←e1∘.×1⍪a0

g0←e0∘.×1⍪input

Fe
ed

 F
or

w
ar

d
Back Propagate

a2←activate z2

z2←p2 tf a1

z1←p1 tf a0

z0←p0 tf input

R←(a2-target)÷a2×1-a2 
or 
R←2×a2-target 

g2←e2∘.×1⍪a1

e1←(e2+.×0 1↓p2)×dactivate z1

e0←(e1+.×0 1↓p1)×dactivate z0



Samples in batches
At this point, we could compute values for the parameters that will improve the model's predictive ability. As 
we've got plenty of parameters to work with we should be able to eliminate the residuals all together. But 
this would only be for one sample. What we are looking for are values for the parameters that will do the 
best job making correct predictions with any 28 by 28 image. To do that, we need to estimate the parameters 
using all the information in the TrainingImages dataset.

One approach is simply to rely on the rank operator to extend the calculations for a vector input to a matrix 
of say n samples. The result for g0 as an example might then be of shape n,16 785. But we still have to de-
cide what to do with n values for each gradient. About the only reasonable answer to that question is to use 
the average. It turns out that the functions we have so far defined need need only slight changes to handle a 
batch of samples, without recourse to the rank operator. In particular:

 n←8 

 batch←n?60000 

 input←TrainingImages[;batch] Both input and target have n as 
 target←TrainingLabels[;batch] the last dimension 
 structure←10 5 16 784 

 p2 p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 a0←activate z0←p0+.×1⍪input 

 a1←activate z1←p1+.×1⍪a0 

 a2←activate z2←p2+.×1⍪a1 

 R←(a2-target)÷a2×1-a2 

 e2←R×dactivate z2 

 e1←((⍉0 1↓p2)+.×e2)×dactivate z1 e1 and e0 are revised to handle multiple 
 e0←((⍉0 1↓p1)+.×e1)×dactivate z0 samples 
 g2←e2+.×⍉1⍪a1 The gradients are summed with an inner 
 g1←e1+.×⍉1⍪a0  rather than an outer product 
 g0←e0+.×⍉1⍪input 

 g2 g1 g0÷←n 

Page  of 14 24



Different activation functions
So far, we've kept the activation function quite general. Where it appears, we've used activate and dacti-
vate rather than referring to specific functions. Now's the time to introduce more of the commonly used ac-
tivation functions. Here are nine:

(Note that the derivations of the derivative expressions are in Appendix B.)

The equations we've constructed so far for the gradients have all assumed that the activation function is of 
rank 0. This is important as it makes possible the nice simplification which we incorporated back at equation 
[2]. However, it does mean that the softmax activation doesn't fit this formulation. It requires some special 
attention and we'll put off dealing with that until another time.

Using an alternative activation function just requires setting activate and dactivate to their appropriate 
values. For example, to use the hyperbolic tangent activation:

 activate←tanh ⋄ dactivate←dtanh 

Activation 
function

Definition Derivative Rank

Sigmoid sigmoid←{÷1+*-⍵} dsigmoid←{{⍵×1-⍵}sigmoid ⍵} 0

Hyperbolic 
Tangent

tanh←{7○⍵} 

or {(*⍵){(⍺-⍵)÷⍺+⍵}*-⍵}

dtanh←{{(1+⍵)×1-⍵}tanh ⍵}

Softmax softmax←{(⊢÷sum)*⍵} dsoftmax←{(diag-⊢∘.×⊢)softmax ⍵} 1

Softsign softsign←{⍵÷1+|⍵} dsoftsign←{{⍵×⍵}÷1+|⍵} 0

Softplus softplus←{⍟1+*⍵} dsoftplus←sigmoid 0

Rectified 
Linear Unit

relu←{0⌈⍵} drelu←{⍵>0} 0

Rectified 
Linear Unit 6

relu6←{6⌊0⌈⍵} drelu6←{(⍵>0)∧⍵≤6} 0

Exponential 
Linear Unit

elu←{(⍵×⍵>0)-(1-*⍵)×⍵≤0} delu←{(*⍵)*⍵≤0} 0

Leaky Rectified 
Linear Unit

lrelu←{⍵×0.01*⍵≤0} dlrelu←{0.01*⍵≤0} 0

Page  of 15 24



Performance 

Of the three layer model
A very important reason for deriving the analytic gradients is to improve performance. Let's measure the 
improvement in the gradient calculation. We'll use a three layer model with a cross entropy objective and 
sigmoid activation.

 n←100 

 batch←n?60000 

 input←TrainingImages[;batch] 

 target←TrainingLabels[;batch] 

 structure←10 16 784 

 p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←crossentropy ⋄ gr←gr_cren ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 timer'a←n÷⍨{obj ⍵ p0}∆ p1 ⋄ b←n÷⍨{obj p1 ⍵}∆ p0' 

6.6 

 timer'g1 g0←gr p1 p0 target input' 

0.001 

 comp a g1 

1 

 comp b g0 

0.922611 

That's a speed up by a factor of perhaps 6600.

(Note that there is a significant difference between g0 and b. This is not a cause for alarm. A manual exami-
nation of these two gradients show them to be close enough to confirm that we're doing the right calcula-
tions. The difference is likely due to the errors accumulated in b, produced by the numeric gradient.)

 r←gr_cren(p1 p0 target input);s;t;z0;a0;z1;a1;R;e1;e0 

 

 ⍝ Gradient for cross entropy objective 

 

   a0←activate z0←p0+.×s←1⍪input 

   a1←activate z1←p1+.×t←1⍪a0 

   R←(a1-target)÷a1×1-a1 

   e1←R×dactivate z1 

   e0←((⍉0 1↓p1)+.×e1)×dactivate z0 

   r←(e1+.×⍉t)(e0+.×⍉s) 

   r÷←¯1↑2↑(⍴input),1

Page  of 16 24



With a larger batch size
Let's check and see how well the analytic gradient behaves with a larger batch size. For this test we'll use the 
entire TrainingImages dataset but will give up on calculating the numeric approximation to the gradient.

 structure←10 16 784 

 p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 timer'g1 g0←gr p1 p0 TrainingLabels TrainingImages' 

1.386 

That's 1.4 seconds on a 2014 iMac to calculate gradients for both transition matrices with the entire 60000 
training database. Earlier, we estimated that one calculation of the numeric gradient might take two hours 
with all of the training data. We're now able to get this done in 1.4 seconds – a speed up by a factor of about 
5000.

With a least squares objective
In order to use the least squares function as the objective, we need to make a slight adjustment to the gradi-
ent function gr. Recall that earlier we used a constant R understanding that it would have a different defini-
tion depending on the objective function selected. Now is the time to make sure that R gets the correct value.

As we'd expect, the execution time for the least squares gradient is much the same:

 structure←10 16 784 

 p1 p0←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 timer'g1 g0←gr p1 p0 TrainingLabels TrainingImages' 

1.187 

r←gr_lsq(p1 p0 target input);s;t;z0;a0;z1;a1;R;e1;e0 

 

 ⍝ Gradient for least squares objective 

 

   a0←activate z0←p0+.×s←1⍪input 

   a1←activate z1←p1+.×t←1⍪a0 

   R←2×a1-target 

   e1←R×dactivate z1 

   e0←((⍉0 1↓p1)+.×e1)×dactivate z0 

   r←(e1+.×⍉t)(e0+.×⍉s) 

   r÷←¯1↑2↑(⍴input),1

Page  of 17 24



Conclusion 

This tutorial shows how the APL derivative rules can be applied to simplify the calculation of gradients used 
in machine learning. The simplification results in improved accuracy, simpler coding and a considerable im-
provement in performance, perhaps by a factor of 6600.

The examples presented here are for networks of fully connected layers with a leastsquares or crossen-
tropy objectives and rank 0 activation functions.

Most of the focus here is on the gradient function, which differs slightly depending on the choice of objec-
tive and activation functions. The tutorial points out where the variations lie, but makes no attempt to con-
solidate the variations into one set of code. There's plenty of time for that later.

The next tutorial shows how the gradient results can be used in an estimation procedure with the MNIST 
handwritten digits model.

Page  of 18 24



Appendix A – Derivatives 

The derivative rules

Common derivatives

Name Definition Rule Note

Taylor expansion f x+dx (f x)+dx{⍺ tip f ∆ ⍵}⍤rf⊢x rf is the rank of f

Sum (f+g)∆ f ∆ + g ∆

Difference (f-g)∆ f ∆ - g ∆

Product (f×g)∆ (f xp g ∆)+g xp f ∆

Quotient (f÷g)∆ ((f ∆)-(f÷g)xp g ∆)xp(÷g)

Outer 
Product

(f∘.×g)∆ (f∘.×g ∆)+order⍉f ∆∘.×g

Composition (f g)∆ (f ∆ g)(n mp)g ∆ m←⍴⍴g x

Inverse fi ∆ ⌹(f ∆ fi)

Matrix 
multiplication

(f+.×g)∆ (f+.×g ∆)+(-n)sh(n sh f ∆)+.×g n←⍴⍴x

Name Definition Rank Derivative

sum {+/,⍵} ∞ {(⍴⍵)⍴1}

num {×/⍴⍵} ∞ {(⍴⍵)⍴0}

mean {(sum÷num)⍵} ∞ {(⍴⍵)⍴÷num ⍵}

max {⌈/,⍵} ∞ {⍵=max ⍵}

min {⌊/,⍵} ∞ {⍵=min ⍵}

zeromax {0⌈⍵} 0 (0<⍵}

zeromin {0⌊⍵} 0 {0≥⍵}

exp {*⍵} 0 {*⍵}

ln {⍟⍵) 0 {÷⍵}

Page  of 19 24



Appendix B 
Derivatives of the Activation Functions 

Sigmoid

 f←{1} ⋄ g←{1+*-⍵} 

 dsigmoid x for scalar x as sigmoid is rank 0 
» (f÷g)∆ x 

» (((f ∆)-(f÷g)×g ∆)×(÷g))x Quotient rule 
» ((0-(f÷g)×g ∆)×(÷g))x As f ∆ ←→ 0 
» ((-(sigmoid x)×g ∆ x)×÷g x As f÷g ←→ sigmoid 
» ((-(sigmoid x)×-*-x)×sigmoid x As g ∆ x ←→ -*-x 
» (((sigmoid x)×*-x)×sigmoid x 

» (1-sigmoid x)×sigmoid x 

» {⍵×1-⍵}sigmoid x   [9] ..................................................................

Hyperbolic Tangent

 f←{(*⍵)-*-⍵} ⋄ g←{(*⍵)+*-⍵} 

 dtanh x for scalar x as tanh is of rank 0 
» (f÷g)∆ x 

» (((f ∆)-(f÷g)×g ∆)×(÷g))x Quotient rule 
» ((g-(f÷g)×f)÷g)x As f ∆ ←→ g and g ∆ ←→ f 
» (1-(f÷g)×f÷g)x 

» {(1+⍵)×1-⍵}tanh x  [10] ..................................................................

Softmax

 f←{*⍵} ⋄ g←{(⍴⍵)⍴+/f ⍵} 

 dsoftmax x for vector x as softmax is of rank 1 
» (f÷g)∆ x 

» (((f ∆)-(f÷g)xp g ∆)xp(÷g))x Quotient rule 
» ((f ∆ x)xp(÷g x))-(((f x)÷g x)xp(2⍴⍴x)⍴f x)xp÷g x 

» (diag(f x)÷g x) As f ∆ x ←→ diag f x 
 -((f x)÷g x)xp(2⍴⍴x)⍴(f x)÷g x and g ∆ x ←→ (2⍴⍴x)⍴f x 
» (diag(f÷g)x)-((f÷g)x)xp(2⍴⍴x)⍴(f÷g)x 

» (diag(f÷g)x)-((f÷g)x)∘.×(f÷g)x As a xp(2⍴⍴a)⍴a ←→ a∘.×a 
» {(diag-⊢∘.×⊢)softmax ⍵}x   [11] ..........................................................

Page  of 20 24



Softsign

 dsoftsign x for scalar x as softsign is of rank 0 
» {⍵÷1+|⍵}∆ x 

» (x≤0)⌷({⍵÷1+⍵}∆ x),{⍵÷1-⍵}∆ x 

» (x≤0)⌷((1-(x÷1+x)×1)÷1+x),(1-(x÷1-x)×¯1)÷1-x Quotient rule, twice 
» (x≤0)⌷(÷×⍨1+x),÷×⍨1-x 
» {⍵×⍵}÷1+|x  [12] 

Softplus

 dsoftplus x for scalar x as softplus is of rank 0 
» {⍟1+*⍵}∆ x 

» (÷1+*x)×*x Composition of {⍟⍵} and {1+*⍵} 
» {÷1+*-⍵}x

» sigmoid x  [13] ..........................................................................

Rectified Linear Unit

 drelu x for scalar x as relu is of rank 0

The relu function is the constant 0 for values ≤0 and a line of unit slope for positive values. Thus, it's de-
rivative is:

» {0<⍵}x  [14] .............................................................................

Rectified Linear Unit 6

 drelu6 x for scalar x as relu6 is of rank 0

The relu6 function is the constant 0 for values ≤0 or >6 and a line of unit slope in between. Thus, it's de-
rivative is:

» {(⍵>0)∧⍵≤6}x  [15] .......................................................................

Exponential Linear Unit

 delu x for scalar x as elu is of rank 0

The elu function is (*x)-1 for values ≤0 and a line of unit slope for positive values. Thus, it's derivative is:

» {(*⍵)*⍵≤0}x  [16] ........................................................................

Leaky Rectified Linear Unit

 dlrelu x for scalar x as lrelu is of rank 0

The lrelu function has two straight lines meeting at x=0. The gradient is 0.01 for negative values and 1 for 
positive values. Thus, it's derivative is:

»  {0.01*⍵≤0}x  [17] .......................................................................

Page  of 21 24



Appendix C – MNIST data 

The MNIST database
The MNIST database of handwritten digits (available from http://yann.lecun.com/exdb/mnist) is a training 
set of 60,000 examples and a test set of 10,000 examples. It is a subset of a larger set available from NIST. 
The digits have been size-normalized and centred in a fixed-size image.

If you download the four .gz files and unzip them (which may happen automatically) you should get the fol-
lowing files:

 t10k-images.idx3-ubyte 7,840,016 Bytes 

 t10k-labels.idx1-ubyte 10,008 Bytes 

 train-images.idx3-ubyte 47,040,016 Bytes 

 train-labels.idx1-ubyte 60,008 Bytes 

Both the training and test data come with two files each. One of the files has image representations as 28 by 
28 arrays of grayscale integers between 0 (white) and 255 (black); the other has labels corresponding to their 
values, 0 to 9. Details of the file formats are provided below.

Here’s a function to read these files:

read←{tn←⍵ ⎕NTIE 0 ⋄ d←⎕NREAD tn,11,2↑⎕NSIZE tn ⋄ tn←⎕NUNTIE tn 

      m n←2⊥⍉2 32⍴d 

      m=2051:2⊥1 2 3 0⍉(n,(2⊥32⍴64↓d),(2⊥32⍴96↓d),8)⍴128↓d 

      m=2049:2⊥⍉(n,8)⍴64↓d} 

 folder←'./NMIST Data/' 

 ⍴TestImages←⍉(10000 784⍴read folder,'t10k-images.idx3-ubyte')÷255 

784 10000 

 ⍴TestLabels←(⍳10)∘.=read folder,'t10k-labels.idx1-ubyte' 

10 10000 

 ⍴TrainingImages←⍉(60000 784⍴read folder,'train-images.idx3-ubyte')÷255 

784 60000 

 ⍴TrainingLabels←(⍳10)∘.=read folder,'train-labels.idx1-ubyte' 

10 60000 

Page  of 22 24

http://yann.lecun.com/exdb/mnist


File formats

Training labels (train-labels-idx1-ubyte):

[offset] [type]          [value]          [description] 
0000     32 bit integer  0x00000801(2049) magic number (MSB first) 
0004     32 bit integer  60000            number of items  
0008     unsigned byte   ??               label  
0009     unsigned byte   ??               label  
........  
xxxx     unsigned byte   ??               label 

Training images (train-images-idx3-ubyte):

[offset] [type]          [value]          [description]  
0000     32 bit integer  0x00000803(2051) magic number  
0004     32 bit integer  60000            number of images  
0008     32 bit integer  28               number of rows  
0012     32 bit integer  28               number of columns  
0016     unsigned byte   ??               pixel  
0017     unsigned byte   ??               pixel  
........  
xxxx     unsigned byte   ??               pixel 

Test labels (t10k-labels-idx1-ubyte):

[offset] [type]          [value]          [description] 
0000     32 bit integer  0x00000801(2049) magic number (MSB first)  
0004     32 bit integer  10000            number of items  
0008     unsigned byte   ??               label  
0009     unsigned byte   ??               label  
........  
xxxx     unsigned byte   ??               label 

Test images (t10k-images-idx3-ubyte):

[offset] [type]          [value]          [description]  
0000     32 bit integer  0x00000803(2051) magic number  
0004     32 bit integer  10000            number of images  
0008     32 bit integer  28               number of rows  
0012     32 bit integer  28               number of columns  
0016     unsigned byte   ??               pixel  
0017     unsigned byte   ??               pixel  
........  
xxxx     unsigned byte   ??               pixel 

Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means fore-
ground (black). The labels values are 0 to 9.

Page  of 23 24



References 

[0] "The Derivative Rules", M. Powell, 
https://aplwiki.com/images/f/f8/2_The_Derivative_Rules.pdf

[1] "The Derivative Revisited", M. Powell, 
https://aplwiki.com/images/f/f9/1_The_Derivative_Revisited.pdf

[2] "Neural Networks and Deep Learning", Michael Nielsen, Determination Press, 2015.

[3] "The Handwritten Digits Model", M. Powell, 
https://aplwiki.com/images/f/fa/4_The_Handwritten_Digits_Model.pdf

Mike Powell 
Victoria, BC, Canada 
April 2020

Page  of 24 24

https://aplwiki.com/images/f/f8/2_The_Derivative_Rules.pdf
https://aplwiki.com/images/f/f9/1_The_Derivative_Revisited.pdf
https://aplwiki.com/images/f/fa/4_The_Handwritten_Digits_Model.pdf

	Machine Learning, An Interactive Approach
	Introduction
	The APL environment
	Shape analysis
	Definitions
	Random numbers

	Recognizing Handwritten Digits
	The model
	Objective functions
	Measuring the closeness of fit
	Adjusting the parameters

	Numeric Approximation of the Gradient
	Frames and cells
	The numeric derivative operator
	Performance of the numeric derivative ∆

	The Analytic Gradients
	The two layer model
	The gradient
	Back propagation
	Including a hidden layer
	The p1 gradient
	The p0 gradient

	A second hidden layer
	Samples in batches
	Different activation functions

	Performance
	Of the three layer model
	With a larger batch size
	With a least squares objective

	Conclusion
	Appendix A – Derivatives
	The derivative rules
	Common derivatives

	Appendix B Derivatives of the Activation Functions
	Sigmoid
	Hyperbolic Tangent
	Softmax
	Softsign
	Softplus
	Rectified Linear Unit
	Rectified Linear Unit 6
	Exponential Linear Unit
	Leaky Rectified Linear Unit

	Appendix C – MNIST data
	The MNIST database
	File formats

	References

